Mostrar el registro sencillo del ítem
dc.contributor.author
Felici, Francis
dc.contributor.author
Gurevitz, Juan Manuel
dc.contributor.author
Mortarini, Mauro
dc.contributor.author
Morales, Juan Manuel
dc.date.available
2025-03-10T13:41:46Z
dc.date.issued
2023-10
dc.identifier.citation
Felici, Francis; Gurevitz, Juan Manuel; Mortarini, Mauro; Morales, Juan Manuel; Hierarchical forecasting models of stink bug population dynamics for pest management; Elsevier; Crop Protection; 172; 10-2023; 1-10
dc.identifier.issn
0261-2194
dc.identifier.uri
http://hdl.handle.net/11336/255803
dc.description.abstract
In recent decades, the intensification of agricultural production, accompanied by an increasing pressure from pests in various crops, has resulted in a substantial increase in the use of synthetic pesticides. Integrated pest management (IPM) provides a framework for the development and use of sustainable control strategies, which include the monitoring of the crop pest complex and the use of decision tools such as predictive models. In this study, an empirical modeling approach based on a hierarchical Bayesian model with a state-space structure was developed to perform stink bug (Pentatomidae) density forecasts to assist in deciding when to carry out pest control interventions, thus increasing the efficacy and efficiency of IPM. Using stink bug abundance and crop phenology data, along with meteorological data from eight different sites in Argentina, we made 1-week forecasts of population density, evaluated the predictive capacity of different models using Leave-One-Out-Cross-Validation, and analyzed how the uncertainty in the predictions vary as a function of the number of vertical beat sheet samples. The forecasts made with our best model showed a reasonable degree of accuracy. We found that i) the observation error of the vertical beat sheet method was much larger than expected, and ii) the uncertainty analysis suggested a sample size of 40 to obtain a good balance between precision and sampling effort, which is in stark contrast to the average sample size usually taken by advisors. Our approach provides advisors with a tool to make better-informed decisions about when and if to carry out pest control interventions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BAYESIAN STATISTICS
dc.subject
POPULATION ECOLOGY
dc.subject
INTEGRATED PEST MANAGEMENT
dc.subject
STATE-SPACE
dc.subject.classification
Ecología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Agricultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Hierarchical forecasting models of stink bug population dynamics for pest management
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-10T11:55:54Z
dc.journal.volume
172
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Felici, Francis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
dc.description.fil
Fil: Gurevitz, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
dc.description.fil
Fil: Mortarini, Mauro. No especifíca;
dc.description.fil
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
dc.journal.title
Crop Protection
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cropro.2023.106330
Archivos asociados