Mostrar el registro sencillo del ítem

dc.contributor.author
Felici, Francis  
dc.contributor.author
Gurevitz, Juan Manuel  
dc.contributor.author
Mortarini, Mauro  
dc.contributor.author
Morales, Juan Manuel  
dc.date.available
2025-03-10T13:41:46Z  
dc.date.issued
2023-10  
dc.identifier.citation
Felici, Francis; Gurevitz, Juan Manuel; Mortarini, Mauro; Morales, Juan Manuel; Hierarchical forecasting models of stink bug population dynamics for pest management; Elsevier; Crop Protection; 172; 10-2023; 1-10  
dc.identifier.issn
0261-2194  
dc.identifier.uri
http://hdl.handle.net/11336/255803  
dc.description.abstract
In recent decades, the intensification of agricultural production, accompanied by an increasing pressure from pests in various crops, has resulted in a substantial increase in the use of synthetic pesticides. Integrated pest management (IPM) provides a framework for the development and use of sustainable control strategies, which include the monitoring of the crop pest complex and the use of decision tools such as predictive models. In this study, an empirical modeling approach based on a hierarchical Bayesian model with a state-space structure was developed to perform stink bug (Pentatomidae) density forecasts to assist in deciding when to carry out pest control interventions, thus increasing the efficacy and efficiency of IPM. Using stink bug abundance and crop phenology data, along with meteorological data from eight different sites in Argentina, we made 1-week forecasts of population density, evaluated the predictive capacity of different models using Leave-One-Out-Cross-Validation, and analyzed how the uncertainty in the predictions vary as a function of the number of vertical beat sheet samples. The forecasts made with our best model showed a reasonable degree of accuracy. We found that i) the observation error of the vertical beat sheet method was much larger than expected, and ii) the uncertainty analysis suggested a sample size of 40 to obtain a good balance between precision and sampling effort, which is in stark contrast to the average sample size usually taken by advisors. Our approach provides advisors with a tool to make better-informed decisions about when and if to carry out pest control interventions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BAYESIAN STATISTICS  
dc.subject
POPULATION ECOLOGY  
dc.subject
INTEGRATED PEST MANAGEMENT  
dc.subject
STATE-SPACE  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Hierarchical forecasting models of stink bug population dynamics for pest management  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-10T11:55:54Z  
dc.journal.volume
172  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Felici, Francis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Gurevitz, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Mortarini, Mauro. No especifíca;  
dc.description.fil
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.journal.title
Crop Protection  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cropro.2023.106330