Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hierarchical forecasting models of stink bug population dynamics for pest management

Felici, FrancisIcon ; Gurevitz, Juan ManuelIcon ; Mortarini, Mauro; Morales, Juan ManuelIcon
Fecha de publicación: 10/2023
Editorial: Elsevier
Revista: Crop Protection
ISSN: 0261-2194
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología; Agricultura

Resumen

In recent decades, the intensification of agricultural production, accompanied by an increasing pressure from pests in various crops, has resulted in a substantial increase in the use of synthetic pesticides. Integrated pest management (IPM) provides a framework for the development and use of sustainable control strategies, which include the monitoring of the crop pest complex and the use of decision tools such as predictive models. In this study, an empirical modeling approach based on a hierarchical Bayesian model with a state-space structure was developed to perform stink bug (Pentatomidae) density forecasts to assist in deciding when to carry out pest control interventions, thus increasing the efficacy and efficiency of IPM. Using stink bug abundance and crop phenology data, along with meteorological data from eight different sites in Argentina, we made 1-week forecasts of population density, evaluated the predictive capacity of different models using Leave-One-Out-Cross-Validation, and analyzed how the uncertainty in the predictions vary as a function of the number of vertical beat sheet samples. The forecasts made with our best model showed a reasonable degree of accuracy. We found that i) the observation error of the vertical beat sheet method was much larger than expected, and ii) the uncertainty analysis suggested a sample size of 40 to obtain a good balance between precision and sampling effort, which is in stark contrast to the average sample size usually taken by advisors. Our approach provides advisors with a tool to make better-informed decisions about when and if to carry out pest control interventions.
Palabras clave: BAYESIAN STATISTICS , POPULATION ECOLOGY , INTEGRATED PEST MANAGEMENT , STATE-SPACE
Ver el registro completo
 
Archivos asociados
Tamaño: 6.953Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/255803
DOI: http://dx.doi.org/10.1016/j.cropro.2023.106330
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Felici, Francis; Gurevitz, Juan Manuel; Mortarini, Mauro; Morales, Juan Manuel; Hierarchical forecasting models of stink bug population dynamics for pest management; Elsevier; Crop Protection; 172; 10-2023; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES