Mostrar el registro sencillo del ítem

dc.contributor.author
Andelsman, Federico  
dc.contributor.author
Masuelli, Sergio  
dc.contributor.author
Tamarit, Francisco  
dc.date.available
2025-03-07T14:50:17Z  
dc.date.issued
2023-12  
dc.identifier.citation
Andelsman, Federico; Masuelli, Sergio; Tamarit, Francisco; Detection and classification of rainfall in South America using satellite images and machine learning techniques; Instituto de Física de Líquidos y Sistemas Biológicos; Papers In Physics; 15; 150006; 12-2023; 1-14  
dc.identifier.uri
http://hdl.handle.net/11336/255688  
dc.description.abstract
The study of precipitation is one of the most intriguing areas in atmospheric sciences, with significant implications for our daily lives and climate change projections. This paper explores the estimation of rainfall trends in South American regions using convolutional neural networks (CNNs). The study focuses on the application of Cloud-Net, a CNNbased model with a format similar to an autoencoder, to obtain qualitative estimates of precipitation patterns. The employed loss functions, Categorical Cross Entropy and Categorical Focal Loss, address the challenges of classifying minority categories in unbalanced data. Regional analysis was conducted, identifying days with high rainfall intensity and the predominant intensities in 25 regions. The CNN model’s performance was compared with the XGBoost algorithm, showing excellent results for extreme rainfall categories and challenging intermediate categories. Furthermore, a comparison was made with Quantitative Precipitation Estimation (QPE) data and ground measurements from rain gauges. While the CNN model provided a valuable qualitative estimate of precipitation trends, achieving precise quantitative estimation would require an extensive data set of in-situ measurements. Overall, this research demonstrates the potential of CNNs for estimating rainfall trends and understanding precipitation patterns in South American regions. The findings offer valuable insights for further applications in meteorology and environmental studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Instituto de Física de Líquidos y Sistemas Biológicos  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Machine learning  
dc.subject
Rainfall estimation  
dc.subject
Convolutional Neural Networks  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Detection and classification of rainfall in South America using satellite images and machine learning techniques  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-28T09:37:24Z  
dc.identifier.eissn
1852-4249  
dc.journal.volume
15  
dc.journal.number
150006  
dc.journal.pagination
1-14  
dc.journal.pais
Argentina  
dc.description.fil
Fil: Andelsman, Federico. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Masuelli, Sergio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Tamarit, Francisco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Papers In Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.papersinphysics.org/papersinphysics/article/view/920  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.4279/PIP.150006