Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detection and classification of rainfall in South America using satellite images and machine learning techniques

Andelsman, Federico; Masuelli, Sergio; Tamarit, FranciscoIcon
Fecha de publicación: 12/2023
Editorial: Instituto de Física de Líquidos y Sistemas Biológicos
Revista: Papers In Physics
e-ISSN: 1852-4249
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The study of precipitation is one of the most intriguing areas in atmospheric sciences, with significant implications for our daily lives and climate change projections. This paper explores the estimation of rainfall trends in South American regions using convolutional neural networks (CNNs). The study focuses on the application of Cloud-Net, a CNNbased model with a format similar to an autoencoder, to obtain qualitative estimates of precipitation patterns. The employed loss functions, Categorical Cross Entropy and Categorical Focal Loss, address the challenges of classifying minority categories in unbalanced data. Regional analysis was conducted, identifying days with high rainfall intensity and the predominant intensities in 25 regions. The CNN model’s performance was compared with the XGBoost algorithm, showing excellent results for extreme rainfall categories and challenging intermediate categories. Furthermore, a comparison was made with Quantitative Precipitation Estimation (QPE) data and ground measurements from rain gauges. While the CNN model provided a valuable qualitative estimate of precipitation trends, achieving precise quantitative estimation would require an extensive data set of in-situ measurements. Overall, this research demonstrates the potential of CNNs for estimating rainfall trends and understanding precipitation patterns in South American regions. The findings offer valuable insights for further applications in meteorology and environmental studies.
Palabras clave: Machine learning , Rainfall estimation , Convolutional Neural Networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.780Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/255688
URL: https://www.papersinphysics.org/papersinphysics/article/view/920
DOI: https://doi.org/10.4279/PIP.150006
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Andelsman, Federico; Masuelli, Sergio; Tamarit, Francisco; Detection and classification of rainfall in South America using satellite images and machine learning techniques; Instituto de Física de Líquidos y Sistemas Biológicos; Papers In Physics; 15; 150006; 12-2023; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES