Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
D'Andrea, Carlos  
dc.contributor.author
Acuña Torres, Leodan  
dc.contributor.author
Turco, Pablo Alejandro  
dc.date.available
2025-02-21T15:30:32Z  
dc.date.issued
2024-11  
dc.identifier.citation
Carando, Daniel Germán; D'Andrea, Carlos; Acuña Torres, Leodan; Turco, Pablo Alejandro; Entropy numbers and box dimension of polynomials and holomorphic functions; Wiley VCH Verlag; Mathematische Nachrichten; 298; 2; 11-2024; 567-580  
dc.identifier.issn
0025-584X  
dc.identifier.uri
http://hdl.handle.net/11336/255041  
dc.description.abstract
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function $f$ is finite, then the entropy numbers of the polynomials in the Taylor series expansion of $f$ at any point of the ball belong to $\ell_p$ for every $p>1$.  
dc.description.abstract
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function f is finite, then the entropy numbers of the polynomials in the Taylor series expansion of f at any point of the ball belong to ℓp for every p > 1.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BANACH SPACES  
dc.subject
BOX DIMENSION  
dc.subject
ENTROPY NUMBERS  
dc.subject
POLYNOMIALS AND HOLOMORPHIC FUNCTIONS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Entropy numbers and box dimension of polynomials and holomorphic functions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-02-17T13:27:35Z  
dc.journal.volume
298  
dc.journal.number
2  
dc.journal.pagination
567-580  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: D'Andrea, Carlos. Universidad de Barcelona; España. Centre de Recerca Matemática; España  
dc.description.fil
Fil: Acuña Torres, Leodan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Mathematische Nachrichten  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mana.202400042  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2401.12059