Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
D'Andrea, Carlos
dc.contributor.author
Acuña Torres, Leodan
dc.contributor.author
Turco, Pablo Alejandro
dc.date.available
2025-02-21T15:30:32Z
dc.date.issued
2024-11
dc.identifier.citation
Carando, Daniel Germán; D'Andrea, Carlos; Acuña Torres, Leodan; Turco, Pablo Alejandro; Entropy numbers and box dimension of polynomials and holomorphic functions; Wiley VCH Verlag; Mathematische Nachrichten; 298; 2; 11-2024; 567-580
dc.identifier.issn
0025-584X
dc.identifier.uri
http://hdl.handle.net/11336/255041
dc.description.abstract
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function $f$ is finite, then the entropy numbers of the polynomials in the Taylor series expansion of $f$ at any point of the ball belong to $\ell_p$ for every $p>1$.
dc.description.abstract
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function f is finite, then the entropy numbers of the polynomials in the Taylor series expansion of f at any point of the ball belong to ℓp for every p > 1.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley VCH Verlag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BANACH SPACES
dc.subject
BOX DIMENSION
dc.subject
ENTROPY NUMBERS
dc.subject
POLYNOMIALS AND HOLOMORPHIC FUNCTIONS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Entropy numbers and box dimension of polynomials and holomorphic functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-02-17T13:27:35Z
dc.journal.volume
298
dc.journal.number
2
dc.journal.pagination
567-580
dc.journal.pais
Alemania
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: D'Andrea, Carlos. Universidad de Barcelona; España. Centre de Recerca Matemática; España
dc.description.fil
Fil: Acuña Torres, Leodan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematische Nachrichten
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mana.202400042
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2401.12059
Archivos asociados