Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Entropy numbers and box dimension of polynomials and holomorphic functions

Carando, Daniel GermánIcon ; D'Andrea, Carlos; Acuña Torres, LeodanIcon ; Turco, Pablo AlejandroIcon
Fecha de publicación: 11/2024
Editorial: Wiley VCH Verlag
Revista: Mathematische Nachrichten
ISSN: 0025-584X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

 
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function $f$ is finite, then the entropy numbers of the polynomials in the Taylor series expansion of $f$ at any point of the ball belong to $\ell_p$ for every $p>1$.
 
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function f is finite, then the entropy numbers of the polynomials in the Taylor series expansion of f at any point of the ball belong to ℓp for every p > 1.
 
Palabras clave: BANACH SPACES , BOX DIMENSION , ENTROPY NUMBERS , POLYNOMIALS AND HOLOMORPHIC FUNCTIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 229.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/255041
URL: https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042
DOI: http://dx.doi.org/10.1002/mana.202400042
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Carando, Daniel Germán; D'Andrea, Carlos; Acuña Torres, Leodan; Turco, Pablo Alejandro; Entropy numbers and box dimension of polynomials and holomorphic functions; Wiley VCH Verlag; Mathematische Nachrichten; 298; 2; 11-2024; 567-580
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES