Mostrar el registro sencillo del ítem

dc.contributor.author
Nicoletti, Emanuel Alfredo  
dc.contributor.author
Stout, Michael G.  
dc.contributor.author
Bertinetti, María A.  
dc.contributor.author
Signorelli, Javier Walter  
dc.date.available
2025-02-20T13:05:00Z  
dc.date.issued
2023-11  
dc.identifier.citation
Nicoletti, Emanuel Alfredo; Stout, Michael G.; Bertinetti, María A.; Signorelli, Javier Walter; A Theoretical and Experimental Study of Predicting Forming-Limit Diagrams for Face-Centered Cubic, Body-Centered Cubic and Hexagonal Close-Packed Metals Using the Marciniak–Kuczynski Visco-Plastic Self-consistent Model; Springer; Journal of Materials Engineering and Performance; 33; 23; 11-2023; 13685-13707  
dc.identifier.issn
1059-9495  
dc.identifier.uri
http://hdl.handle.net/11336/254979  
dc.description.abstract
This investigation focuses on the Marciniak and Kuczynski, visco-plastic, self-consistent (VPSC) prediction of the forming-limit curves for AA6061-T4 aluminum, cold-rolled steel and a Zn-Cu-Ti alloy denoted Zn20. These simulations were based on and calibrated with an extensive experimental database–stress/strain curves, measurements of Lankford coefficients and experimentally determined actual initial textures—and they were conducted with various parametric profiles: hardening laws and both VPSC affine and tangent linearization techniques. Anisotropy, as seen through stress/strain curves and Lankford coefficients, was found to dominate the left-hand side of the forming-limit diagram. After matching the simulations to the hardening curves and Lankford data, satisfying agreement for all three materials was found for the forming-limit measurements at and between plane-strain and uniaxial tension. The right-hand side of the forming-limit diagram was dominated by texture evolution. In the case of aluminum, predicted balanced-biaxial textures evolved differently for the affine and tangent linearizations and the predicted limit strains did not coincide. It was only when the simulations were forced to maintain the initial texture that the results of the two linearizations matched. The affine and tangent results were also in disagreement for the cold-rolled steel. Eliminating texture evolution alone did not resolve this inconsistency. It was necessary to also eliminate pencil glide—restricting glide to only the {110} <111> planes and directions, 12 slip systems—for the affine and tangent results to agree, The initial Zn20 texture hardly evolved from its initial state in the simulations. Thus, it was not surprising that the VPSC affine and tangent limit-strain predictions coincided without requiring restrictions. These results show the importance of accurate input data and at a minimum having balanced-biaxial limit-strain data to verify the simulation predictions. Clearly, a single parametric input recipe is insufficient when considering multiple material classes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ALUMINUM  
dc.subject
ANISOTROPY  
dc.subject
FORMING-LIMIT DIAGRAM  
dc.subject
LANKFORD COEFFICIENT  
dc.subject
MARCINIAK–KUCZYNSKI  
dc.subject
STRESS/STRAIN CURVE  
dc.subject
TEXTURE  
dc.subject
VISCO-PLASTIC SELF-CONSISTENT  
dc.subject
ZINC  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Theoretical and Experimental Study of Predicting Forming-Limit Diagrams for Face-Centered Cubic, Body-Centered Cubic and Hexagonal Close-Packed Metals Using the Marciniak–Kuczynski Visco-Plastic Self-consistent Model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-09T09:18:28Z  
dc.journal.volume
33  
dc.journal.number
23  
dc.journal.pagination
13685-13707  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Nicoletti, Emanuel Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina  
dc.description.fil
Fil: Stout, Michael G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina  
dc.description.fil
Fil: Bertinetti, María A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina  
dc.description.fil
Fil: Signorelli, Javier Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina  
dc.journal.title
Journal of Materials Engineering and Performance  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11665-023-08905-2