Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Theoretical and Experimental Study of Predicting Forming-Limit Diagrams for Face-Centered Cubic, Body-Centered Cubic and Hexagonal Close-Packed Metals Using the Marciniak–Kuczynski Visco-Plastic Self-consistent Model

Nicoletti, Emanuel AlfredoIcon ; Stout, Michael G.; Bertinetti, María A.; Signorelli, Javier WalterIcon
Fecha de publicación: 11/2023
Editorial: Springer
Revista: Journal of Materials Engineering and Performance
ISSN: 1059-9495
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

This investigation focuses on the Marciniak and Kuczynski, visco-plastic, self-consistent (VPSC) prediction of the forming-limit curves for AA6061-T4 aluminum, cold-rolled steel and a Zn-Cu-Ti alloy denoted Zn20. These simulations were based on and calibrated with an extensive experimental database–stress/strain curves, measurements of Lankford coefficients and experimentally determined actual initial textures—and they were conducted with various parametric profiles: hardening laws and both VPSC affine and tangent linearization techniques. Anisotropy, as seen through stress/strain curves and Lankford coefficients, was found to dominate the left-hand side of the forming-limit diagram. After matching the simulations to the hardening curves and Lankford data, satisfying agreement for all three materials was found for the forming-limit measurements at and between plane-strain and uniaxial tension. The right-hand side of the forming-limit diagram was dominated by texture evolution. In the case of aluminum, predicted balanced-biaxial textures evolved differently for the affine and tangent linearizations and the predicted limit strains did not coincide. It was only when the simulations were forced to maintain the initial texture that the results of the two linearizations matched. The affine and tangent results were also in disagreement for the cold-rolled steel. Eliminating texture evolution alone did not resolve this inconsistency. It was necessary to also eliminate pencil glide—restricting glide to only the {110} <111> planes and directions, 12 slip systems—for the affine and tangent results to agree, The initial Zn20 texture hardly evolved from its initial state in the simulations. Thus, it was not surprising that the VPSC affine and tangent limit-strain predictions coincided without requiring restrictions. These results show the importance of accurate input data and at a minimum having balanced-biaxial limit-strain data to verify the simulation predictions. Clearly, a single parametric input recipe is insufficient when considering multiple material classes.
Palabras clave: ALUMINUM , ANISOTROPY , FORMING-LIMIT DIAGRAM , LANKFORD COEFFICIENT , MARCINIAK–KUCZYNSKI , STRESS/STRAIN CURVE , TEXTURE , VISCO-PLASTIC SELF-CONSISTENT , ZINC
Ver el registro completo
 
Archivos asociados
Tamaño: 2.161Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254979
DOI: http://dx.doi.org/10.1007/s11665-023-08905-2
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Nicoletti, Emanuel Alfredo; Stout, Michael G.; Bertinetti, María A.; Signorelli, Javier Walter; A Theoretical and Experimental Study of Predicting Forming-Limit Diagrams for Face-Centered Cubic, Body-Centered Cubic and Hexagonal Close-Packed Metals Using the Marciniak–Kuczynski Visco-Plastic Self-consistent Model; Springer; Journal of Materials Engineering and Performance; 33; 23; 11-2023; 13685-13707
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES