Mostrar el registro sencillo del ítem

dc.contributor.author
Silberberg, Mauro  
dc.contributor.author
Grecco, Hernan Edgardo  
dc.date.available
2025-02-20T10:34:48Z  
dc.date.issued
2023-12  
dc.identifier.citation
Silberberg, Mauro; Grecco, Hernan Edgardo; Binlets: Data fusion-aware denoising enables accurate and unbiased quantification of multichannel signals; Elsevier Science; Information Fusion; 101; 12-2023; 1-7  
dc.identifier.issn
1566-2535  
dc.identifier.uri
http://hdl.handle.net/11336/254931  
dc.description.abstract
As monitoring multiple signals becomes more cost-effective, combining them through a data fusion-aware denoising method can produce a more robust estimation of the underlying process. Here, we present a method based on the Haar wavelet transform that trades off resolution against accuracy based on statistical significance. By taking advantage of correlations between channels, it offers a superior performance compared to denoising each channel separately. It outperforms standard wavelet methods when the magnitude of interest in the data-fusion process involves a non-linear transformation or reduction of a multichannel signal. We demonstrate its efficacy by benchmarking our method against standard wavelet thresholding for synthetic single and multichannel time series, and a multichannel two-dimensional image. The method has a simple interpretation as an adaptive binning of the signal, and neither requires training data nor specialized hardware to run fast. In addition, a reference Python implementation is available on GitHub and PyPI, making it simple to integrate into any analysis pipeline.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Wavelets  
dc.subject
Denoising  
dc.subject
Signal processing  
dc.subject
Multichannel  
dc.subject
Time series  
dc.subject
Images  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Binlets: Data fusion-aware denoising enables accurate and unbiased quantification of multichannel signals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-28T09:25:51Z  
dc.journal.volume
101  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Silberberg, Mauro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.journal.title
Information Fusion  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.inffus.2023.101999