Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Binlets: Data fusion-aware denoising enables accurate and unbiased quantification of multichannel signals

Silberberg, MauroIcon ; Grecco, Hernan EdgardoIcon
Fecha de publicación: 12/2023
Editorial: Elsevier Science
Revista: Information Fusion
ISSN: 1566-2535
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

As monitoring multiple signals becomes more cost-effective, combining them through a data fusion-aware denoising method can produce a more robust estimation of the underlying process. Here, we present a method based on the Haar wavelet transform that trades off resolution against accuracy based on statistical significance. By taking advantage of correlations between channels, it offers a superior performance compared to denoising each channel separately. It outperforms standard wavelet methods when the magnitude of interest in the data-fusion process involves a non-linear transformation or reduction of a multichannel signal. We demonstrate its efficacy by benchmarking our method against standard wavelet thresholding for synthetic single and multichannel time series, and a multichannel two-dimensional image. The method has a simple interpretation as an adaptive binning of the signal, and neither requires training data nor specialized hardware to run fast. In addition, a reference Python implementation is available on GitHub and PyPI, making it simple to integrate into any analysis pipeline.
Palabras clave: Wavelets , Denoising , Signal processing , Multichannel , Time series , Images
Ver el registro completo
 
Archivos asociados
Tamaño: 1.920Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254931
DOI: http://dx.doi.org/10.1016/j.inffus.2023.101999
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Silberberg, Mauro; Grecco, Hernan Edgardo; Binlets: Data fusion-aware denoising enables accurate and unbiased quantification of multichannel signals; Elsevier Science; Information Fusion; 101; 12-2023; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES