Mostrar el registro sencillo del ítem
dc.contributor.author
Sevitz, Sofia
dc.contributor.author
Mirkin, Nicolás

dc.contributor.author
Wisniacki, Diego Ariel

dc.date.available
2025-02-20T10:21:30Z
dc.date.issued
2023-06
dc.identifier.citation
Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel; Predicting the minimum control time of quantum protocols with artificial neural networks; IOP Publishing; Quantum Science and Technology; 8; 3; 6-2023; 1-14
dc.identifier.issn
2058-9565
dc.identifier.uri
http://hdl.handle.net/11336/254914
dc.description.abstract
Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Control cuantico
dc.subject
Inteligencia artificial
dc.subject
tiempo minimo
dc.subject.classification
Otras Ciencias Físicas

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Predicting the minimum control time of quantum protocols with artificial neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-28T09:25:41Z
dc.journal.volume
8
dc.journal.number
3
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Sevitz, Sofia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Mirkin, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.journal.title
Quantum Science and Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2058-9565/acd579
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/2058-9565/acd579
Archivos asociados