Mostrar el registro sencillo del ítem

dc.contributor.author
Sevitz, Sofia  
dc.contributor.author
Mirkin, Nicolás  
dc.contributor.author
Wisniacki, Diego Ariel  
dc.date.available
2025-02-20T10:21:30Z  
dc.date.issued
2023-06  
dc.identifier.citation
Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel; Predicting the minimum control time of quantum protocols with artificial neural networks; IOP Publishing; Quantum Science and Technology; 8; 3; 6-2023; 1-14  
dc.identifier.issn
2058-9565  
dc.identifier.uri
http://hdl.handle.net/11336/254914  
dc.description.abstract
Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Control cuantico  
dc.subject
Inteligencia artificial  
dc.subject
tiempo minimo  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predicting the minimum control time of quantum protocols with artificial neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-28T09:25:41Z  
dc.journal.volume
8  
dc.journal.number
3  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sevitz, Sofia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Mirkin, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Wisniacki, Diego Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.journal.title
Quantum Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2058-9565/acd579  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/2058-9565/acd579