Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting the minimum control time of quantum protocols with artificial neural networks

Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego ArielIcon
Fecha de publicación: 06/2023
Editorial: IOP Publishing
Revista: Quantum Science and Technology
ISSN: 2058-9565
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Quantum control relies on the driving of quantum states without the loss of coherence, thus the leakage of quantum properties into the environment over time is a fundamental challenge. One work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost importance. Here, we employ a machine learning network in order to estimate the MCT in a state transfer protocol. An unsupervised learning approach is considered by using a combination of an autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is analyzed given that it has an analytical MCT and a distinctive topology change in the control landscape when the total evolution time is either under or over the MCT. We obtain that the network is able to not only produce an estimation of the MCT but also gains an understanding of the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while limitations to our very simple architecture were encountered.
Palabras clave: Control cuantico , Inteligencia artificial , tiempo minimo
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.412Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254914
URL: https://iopscience.iop.org/article/10.1088/2058-9565/acd579
DOI: http://dx.doi.org/10.1088/2058-9565/acd579
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Sevitz, Sofia; Mirkin, Nicolás; Wisniacki, Diego Ariel; Predicting the minimum control time of quantum protocols with artificial neural networks; IOP Publishing; Quantum Science and Technology; 8; 3; 6-2023; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES