Mostrar el registro sencillo del ítem

dc.contributor.author
dos Santos, Diego P.  
dc.contributor.author
Sena, Marcelo M.  
dc.contributor.author
Almeida, Mariana R.  
dc.contributor.author
Mazali, Italo O.  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.contributor.author
Villa, Javier E. L.  
dc.date.available
2025-02-19T13:23:22Z  
dc.date.issued
2023-05  
dc.identifier.citation
dos Santos, Diego P.; Sena, Marcelo M.; Almeida, Mariana R.; Mazali, Italo O.; Olivieri, Alejandro Cesar; et al.; Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends; Springer Heidelberg; Analytical and Bioanalytical Chemistry; 415; 18; 5-2023; 3945-3966  
dc.identifier.issn
1618-2642  
dc.identifier.uri
http://hdl.handle.net/11336/254843  
dc.description.abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DATA ANALYSIS  
dc.subject
NANOMATERIALS  
dc.subject
PCA  
dc.subject
PLASMONICS  
dc.subject
SUPERVISED METHODS  
dc.subject
VIBRATIONAL SPECTROSCOPY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-27T09:55:01Z  
dc.journal.volume
415  
dc.journal.number
18  
dc.journal.pagination
3945-3966  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: dos Santos, Diego P.. Universidade Estadual de Campinas; Brasil  
dc.description.fil
Fil: Sena, Marcelo M.. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Almeida, Mariana R.. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Mazali, Italo O.. Universidade Estadual de Campinas; Brasil  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina  
dc.description.fil
Fil: Villa, Javier E. L.. Universidade Estadual de Campinas; Brasil  
dc.journal.title
Analytical and Bioanalytical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00216-023-04620-y