Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends

dos Santos, Diego P.; Sena, Marcelo M.; Almeida, Mariana R.; Mazali, Italo O.; Olivieri, Alejandro CesarIcon ; Villa, Javier E. L.
Fecha de publicación: 05/2023
Editorial: Springer Heidelberg
Revista: Analytical and Bioanalytical Chemistry
ISSN: 1618-2642
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
Palabras clave: DATA ANALYSIS , NANOMATERIALS , PCA , PLASMONICS , SUPERVISED METHODS , VIBRATIONAL SPECTROSCOPY
Ver el registro completo
 
Archivos asociados
Tamaño: 3.072Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254843
DOI: http://dx.doi.org/10.1007/s00216-023-04620-y
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
dos Santos, Diego P.; Sena, Marcelo M.; Almeida, Mariana R.; Mazali, Italo O.; Olivieri, Alejandro Cesar; et al.; Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends; Springer Heidelberg; Analytical and Bioanalytical Chemistry; 415; 18; 5-2023; 3945-3966
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES