Mostrar el registro sencillo del ítem

dc.contributor.author
Perrucci, Daniel Roberto  
dc.contributor.author
Roy, Marie Françoise  
dc.date.available
2025-02-18T17:30:25Z  
dc.date.issued
2024-12  
dc.identifier.citation
Perrucci, Daniel Roberto; Roy, Marie Françoise; Algebraic winding numbers; Academic Press Inc Elsevier Science; Journal of Algebra; 659; 12-2024; 581-610  
dc.identifier.issn
0021-8693  
dc.identifier.uri
http://hdl.handle.net/11336/254729  
dc.description.abstract
In this paper, we propose a new algebraic winding number and prove that it computes the number of complex roots of a polynomial in a rectangle, including roots on edges or vertices with appropriate counting. The definition makes sense for the algebraic closure C = R[i] of a real closed field R, and the root counting result also holds in this case. We study in detail the properties of the algebraic winding number defined in [3] with respect to complex root counting in rectangles. We extend both winding numbers to rational functions, obtaining then algebraic versions of the argument principle for rectangles.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Winding number  
dc.subject
Polynomials  
dc.subject
Root finding  
dc.subject
Symbolic methods  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Algebraic winding numbers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-02-17T13:28:30Z  
dc.journal.volume
659  
dc.journal.pagination
581-610  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Roy, Marie Françoise. Universite de Rennes I; Francia  
dc.journal.title
Journal of Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869324003843  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2024.07.010  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2305.08638