Artículo
Algebraic winding numbers
Fecha de publicación:
12/2024
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we propose a new algebraic winding number and prove that it computes the number of complex roots of a polynomial in a rectangle, including roots on edges or vertices with appropriate counting. The definition makes sense for the algebraic closure C = R[i] of a real closed field R, and the root counting result also holds in this case. We study in detail the properties of the algebraic winding number defined in [3] with respect to complex root counting in rectangles. We extend both winding numbers to rational functions, obtaining then algebraic versions of the argument principle for rectangles.
Palabras clave:
Winding number
,
Polynomials
,
Root finding
,
Symbolic methods
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Perrucci, Daniel Roberto; Roy, Marie Françoise; Algebraic winding numbers; Academic Press Inc Elsevier Science; Journal of Algebra; 659; 12-2024; 581-610
Compartir
Altmétricas