Mostrar el registro sencillo del ítem

dc.contributor.author
Galván, Catalina María  
dc.contributor.author
Spies, Ruben Daniel  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Peterson, Victoria  
dc.date.available
2025-02-18T14:28:40Z  
dc.date.issued
2024-06  
dc.identifier.citation
Galván, Catalina María; Spies, Ruben Daniel; Milone, Diego Humberto; Peterson, Victoria; Neurophysiologically Meaningful Motor Imagery EEG Simulation With Applications to Data Augmentation; Institute of Electrical and Electronics Engineers; Ieee Transactions On Neural Systems And Rehabilitation Engineering; 32; 6-2024; 2346-2355  
dc.identifier.issn
1534-4320  
dc.identifier.uri
http://hdl.handle.net/11336/254693  
dc.description.abstract
Motor imagery-based Brain-Computer Interfaces (MI-BCIs) have gained a lot of attention due to their potential usability in neurorehabilitation and neuroprosthetics. However, the accurate recognition of MI patterns in electroencephalography signals (EEG) is hindered by several data-related limitations, which restrict the practical utilization of these systems. Moreover, leveraging deep learning (DL) models for MI decoding is challenged by the difficulty of accessing user-specific MI-EEG data on large scales. Simulated MI-EEG signals can be useful to address these issues, providing well-defined data for the validation of decoding models and serving as a data augmentation approach to improve the training of DL models. While substantial efforts have been dedicated to implementing effective data augmentation strategies and model-based EEG signal generation, the simulation of neurophysiologically plausible EEG-like signals has not yet been exploited in the context of data augmentation. Furthermore, none of the existing approaches have integrated user-specific neurophysiological information during the data generation process. Here, we present PySimMIBCI, a framework for generating realistic MI-EEG signals by integrating neurophysiologically meaningful activity into biophysical forward models. By means of PySimMIBCI, different user capabilities to control an MI-BCI can be simulated and fatigue effects can be included in the generated EEG. Results show that our simulated data closely resemble real data. Moreover, the proposed data augmentation strategy based on our simulated user-specific data significantly outperforms other state-of-the-art augmentation approaches, enhancing DL models performance by up to 15%.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Data augmentation  
dc.subject
Brain modeling  
dc.subject
Decoding  
dc.subject
Data models  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Neurophysiologically Meaningful Motor Imagery EEG Simulation With Applications to Data Augmentation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-02-12T15:43:50Z  
dc.journal.volume
32  
dc.journal.pagination
2346-2355  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Ieee Transactions On Neural Systems And Rehabilitation Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10565958/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TNSRE.2024.3417311