Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Neurophysiologically Meaningful Motor Imagery EEG Simulation With Applications to Data Augmentation

Galván, Catalina MaríaIcon ; Spies, Ruben DanielIcon ; Milone, Diego HumbertoIcon ; Peterson, VictoriaIcon
Fecha de publicación: 06/2024
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Transactions On Neural Systems And Rehabilitation Engineering
ISSN: 1534-4320
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Motor imagery-based Brain-Computer Interfaces (MI-BCIs) have gained a lot of attention due to their potential usability in neurorehabilitation and neuroprosthetics. However, the accurate recognition of MI patterns in electroencephalography signals (EEG) is hindered by several data-related limitations, which restrict the practical utilization of these systems. Moreover, leveraging deep learning (DL) models for MI decoding is challenged by the difficulty of accessing user-specific MI-EEG data on large scales. Simulated MI-EEG signals can be useful to address these issues, providing well-defined data for the validation of decoding models and serving as a data augmentation approach to improve the training of DL models. While substantial efforts have been dedicated to implementing effective data augmentation strategies and model-based EEG signal generation, the simulation of neurophysiologically plausible EEG-like signals has not yet been exploited in the context of data augmentation. Furthermore, none of the existing approaches have integrated user-specific neurophysiological information during the data generation process. Here, we present PySimMIBCI, a framework for generating realistic MI-EEG signals by integrating neurophysiologically meaningful activity into biophysical forward models. By means of PySimMIBCI, different user capabilities to control an MI-BCI can be simulated and fatigue effects can be included in the generated EEG. Results show that our simulated data closely resemble real data. Moreover, the proposed data augmentation strategy based on our simulated user-specific data significantly outperforms other state-of-the-art augmentation approaches, enhancing DL models performance by up to 15%.
Palabras clave: Data augmentation , Brain modeling , Decoding , Data models
Ver el registro completo
 
Archivos asociados
Tamaño: 1.802Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/254693
URL: https://ieeexplore.ieee.org/document/10565958/
DOI: http://dx.doi.org/10.1109/TNSRE.2024.3417311
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Galván, Catalina María; Spies, Ruben Daniel; Milone, Diego Humberto; Peterson, Victoria; Neurophysiologically Meaningful Motor Imagery EEG Simulation With Applications to Data Augmentation; Institute of Electrical and Electronics Engineers; Ieee Transactions On Neural Systems And Rehabilitation Engineering; 32; 6-2024; 2346-2355
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES