Artículo
Numerical treatment of the bounded-control LQR problem by updating the final phase value
Fecha de publicación:
08/2016
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Latin America Transactions
ISSN:
1548-0992
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A novel approach has been developed for approximately solving the constrained LQR problem, based on updating the final state and costate of an unrestricted related regular problem, and the switching times (when the control meets the constraints). The main result is the expression of a suboptimal control in feedback form by using some corresponding Riccati equation. The gradient method is applied to reduce the cost via explicit algebraic formula for its partial derivatives with respect to the hidden final state/costate of the related regular problem. The numerical method results efficient because it does not involve integrations of states or cost trajectories and reduces the dimension of the relevant unknown parameters. All the relevant objects are calculated from a few auxiliary matrices, which are computed only once and kept in memory. The scheme is here applied to the "cheapest stop of a train" case-study whose optimal solution is already known.
Palabras clave:
Sistemas Lineales
,
Control Óptimo
,
Restricciones
,
Metodo del Gradiente
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Costanza, Vicente; Rivadeneira Paz, Pablo Santiago; Gómez Múnera, John Anderson; Numerical treatment of the bounded-control LQR problem by updating the final phase value; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 14; 6; 8-2016; 2687-2692
Compartir
Altmétricas