Mostrar el registro sencillo del ítem

dc.contributor.author
Papadrakakis, M.  
dc.contributor.author
Papadopoulus, V.  
dc.contributor.author
Lagaros, N.D.  
dc.contributor.author
Oliver, J.  
dc.contributor.author
Huespe, Alfredo Edmundo  
dc.contributor.author
Sánchez, Pablo Javier  
dc.date.available
2017-09-28T21:07:51Z  
dc.date.issued
2008-12  
dc.identifier.citation
Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; et al.; Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks; Elsevier Science; Structural Safety; 30; 3; 12-2008; 217-235  
dc.identifier.issn
0167-4730  
dc.identifier.uri
http://hdl.handle.net/11336/25398  
dc.description.abstract
Probabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Reliability Analysis  
dc.subject
Fragility Curves;  
dc.subject
Vulnerability  
dc.subject
Monte Carlo Simulation  
dc.title
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-25T18:21:45Z  
dc.journal.volume
30  
dc.journal.number
3  
dc.journal.pagination
217-235  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Papadrakakis, M.. Athens University; Grecia  
dc.description.fil
Fil: Papadopoulus, V.. Athens University; Grecia  
dc.description.fil
Fil: Lagaros, N.D.. Athens University; Grecia  
dc.description.fil
Fil: Oliver, J.. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Structural Safety  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.strusafe.2006.11.005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167473006000713