Mostrar el registro sencillo del ítem
dc.contributor.author
Papadrakakis, M.
dc.contributor.author
Papadopoulus, V.
dc.contributor.author
Lagaros, N.D.
dc.contributor.author
Oliver, J.
dc.contributor.author
Huespe, Alfredo Edmundo
dc.contributor.author
Sánchez, Pablo Javier
dc.date.available
2017-09-28T21:07:51Z
dc.date.issued
2008-12
dc.identifier.citation
Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; et al.; Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks; Elsevier Science; Structural Safety; 30; 3; 12-2008; 217-235
dc.identifier.issn
0167-4730
dc.identifier.uri
http://hdl.handle.net/11336/25398
dc.description.abstract
Probabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Reliability Analysis
dc.subject
Fragility Curves;
dc.subject
Vulnerability
dc.subject
Monte Carlo Simulation
dc.title
Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-25T18:21:45Z
dc.journal.volume
30
dc.journal.number
3
dc.journal.pagination
217-235
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Papadrakakis, M.. Athens University; Grecia
dc.description.fil
Fil: Papadopoulus, V.. Athens University; Grecia
dc.description.fil
Fil: Lagaros, N.D.. Athens University; Grecia
dc.description.fil
Fil: Oliver, J.. Universidad Politecnica de Catalunya; España
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Sánchez, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.journal.title
Structural Safety
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.strusafe.2006.11.005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167473006000713
Archivos asociados