Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks

Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo EdmundoIcon ; Sánchez, Pablo JavierIcon
Fecha de publicación: 12/2008
Editorial: Elsevier Science
Revista: Structural Safety
ISSN: 0167-4730
Idioma: Inglés
Tipo de recurso: Artículo publicado

Resumen

Probabilistic analysis is an emerging field of structural engineering which is very significant in structures of great importance like dams, nuclear reactors etc. In this work a Neural Networks (NN) based Monte Carlo Simulation (MCS) procedure is proposed for the vulnerability analysis of large concrete dams, in conjunction with a non-linear finite element analysis for the prediction of the bearing capacity of the Dam using the Continuum Strong Discontinuity Approach. The use of NN was motivated by the approximate concepts inherent in vulnerability analysis and the time consuming repeated analyses required for MCS. The Rprop algorithm is implemented for training the NN utilizing available information generated from selected non-linear analyses. The trained NN is then used in the context of a MCS procedure to compute the peak load of the structure due to different sets of basic random variables leading to close prediction of the probability of failure. This way it is made possible to obtain rigorous estimates of the probability of failure and the fragility curves for the Scalere (Italy) dam for various predefined damage levels and various flood scenarios. The uncertain properties (modeled as random variables) considered, for both test examples, are the Young’s modulus, the Poisson’s ratio, the tensile strength and the specific fracture energy of the concrete.
Palabras clave: Reliability Analysis , Fragility Curves; , Vulnerability , Monte Carlo Simulation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.161Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/25398
DOI: http://dx.doi.org/10.1016/j.strusafe.2006.11.005
URL: http://www.sciencedirect.com/science/article/pii/S0167473006000713
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Papadrakakis, M.; Papadopoulus, V.; Lagaros, N.D.; Oliver, J.; Huespe, Alfredo Edmundo; et al.; Vulnerability Analysis of Large Concrete Dams using the Continuum Strong Discontinuity Approach and Neural Networks; Elsevier Science; Structural Safety; 30; 3; 12-2008; 217-235
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES