Mostrar el registro sencillo del ítem

dc.contributor.author
Auat Cheein, Fernando Alfredo  
dc.contributor.author
Di Sciascio, Fernando Agustín  
dc.contributor.author
Scaglia, Gustavo Juan Eduardo  
dc.contributor.author
Carelli Albarracin, Ricardo Oscar  
dc.date.available
2025-01-16T10:49:39Z  
dc.date.issued
2010-03  
dc.identifier.citation
Auat Cheein, Fernando Alfredo; Di Sciascio, Fernando Agustín; Scaglia, Gustavo Juan Eduardo; Carelli Albarracin, Ricardo Oscar; Towards Features Updating Selection based on the Covariance Matrix of the SLAM System State; Cambridge University Press; Robotica; 29; 2; 3-2010; 271-282  
dc.identifier.issn
0263-5747  
dc.identifier.uri
http://hdl.handle.net/11336/252668  
dc.description.abstract
This paper addresses the problem of a features selection criterion for a simultaneous localization and mapping (SLAM) algorithm implemented on a mobile robot. This SLAM algorithm is a sequential extended Kalman filter (EKF) implementation that extracts corners and lines from the environment. The selection procedure is made according to the convergence theorem of the EKF-based SLAM. Thus, only those features that contribute the most to the decreasing of the uncertainty ellipsoid volume of the SLAM system state will be chosen for the correction stage of the algorithm. The proposed features selection procedure restricts the number of features to be updated during the SLAM process, thus allowing real time implementations with non-reactive mobile robot navigation controllers. In addition, a Monte Carlo experiment is carried out in order to show the map reconstruction precision according to the Kullback?Leibler divergence curves. Consistency analysis of the proposed SLAM algorithm and experimental results in real environments are also shown in this work.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SLAM  
dc.subject
Feature Selection  
dc.subject
Mobile Robot  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Towards Features Updating Selection based on the Covariance Matrix of the SLAM System State  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-14T14:32:48Z  
dc.journal.volume
29  
dc.journal.number
2  
dc.journal.pagination
271-282  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Auat Cheein, Fernando Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.journal.title
Robotica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/S0263574710000111