Artículo
Towards Features Updating Selection based on the Covariance Matrix of the SLAM System State
Auat Cheein, Fernando Alfredo
; Di Sciascio, Fernando Agustín; Scaglia, Gustavo Juan Eduardo
; Carelli Albarracin, Ricardo Oscar
Fecha de publicación:
03/2010
Editorial:
Cambridge University Press
Revista:
Robotica
ISSN:
0263-5747
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper addresses the problem of a features selection criterion for a simultaneous localization and mapping (SLAM) algorithm implemented on a mobile robot. This SLAM algorithm is a sequential extended Kalman filter (EKF) implementation that extracts corners and lines from the environment. The selection procedure is made according to the convergence theorem of the EKF-based SLAM. Thus, only those features that contribute the most to the decreasing of the uncertainty ellipsoid volume of the SLAM system state will be chosen for the correction stage of the algorithm. The proposed features selection procedure restricts the number of features to be updated during the SLAM process, thus allowing real time implementations with non-reactive mobile robot navigation controllers. In addition, a Monte Carlo experiment is carried out in order to show the map reconstruction precision according to the Kullback?Leibler divergence curves. Consistency analysis of the proposed SLAM algorithm and experimental results in real environments are also shown in this work.
Palabras clave:
SLAM
,
Feature Selection
,
Mobile Robot
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Auat Cheein, Fernando Alfredo; Di Sciascio, Fernando Agustín; Scaglia, Gustavo Juan Eduardo; Carelli Albarracin, Ricardo Oscar; Towards Features Updating Selection based on the Covariance Matrix of the SLAM System State; Cambridge University Press; Robotica; 29; 2; 3-2010; 271-282
Compartir
Altmétricas