Mostrar el registro sencillo del ítem
dc.contributor.author
Idesis, Sebastian
dc.contributor.author
Allegra, Michele
dc.contributor.author
Vohryzek, Jakub
dc.contributor.author
Sanz Perl Hernandez, Yonatan
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.contributor.author
Metcalf, Nicholas V.
dc.contributor.author
Griffis, Joseph C.
dc.contributor.author
Corbetta, Maurizio
dc.contributor.author
Shulman, Gordon L.
dc.contributor.author
Deco, Gustavo
dc.date.available
2025-01-08T09:47:48Z
dc.date.issued
2024-07
dc.identifier.citation
Idesis, Sebastian; Allegra, Michele; Vohryzek, Jakub; Sanz Perl Hernandez, Yonatan; Metcalf, Nicholas V.; et al.; Generative whole-brain dynamics models from healthy subjects predict functional alterations in stroke at the level of individual patients; Oxford University Press; Brain Communications; 6; 4; 7-2024; 1-17
dc.identifier.issn
2632-1297
dc.identifier.uri
http://hdl.handle.net/11336/251961
dc.description.abstract
Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy structural connectome that forms the backbone of these models and produce large alterations in inter-regional functional interactions. These interactions are typically measured by correlating the time series of the activity between two brain regions in a process, called resting functional connectivity. We show that adding information about the structural disconnections produced by a patient’s lesion to a whole-brain model previously trained on structural and functional data from a large cohort of healthy subjects enables the prediction of the resting functional connectivity of the patient and fits the model directly to the patient’s data (Pearson correlation = 0.37; mean square error = 0.005). Furthermore, the model dynamics reproduce functional connectivity-based measures that are typically abnormal in stroke patients and measures that specifically isolate these abnormalities. Therefore, although whole-brain models typically involve a large number of free parameters, the results show that, even after fixing those parameters, the model reproduces results from a population very different than that on which the model was trained. In addition to validating the model, these results show that the model mechanistically captures the relationships between the anatomical structure and the functional activity of the human brain.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Neuroimaging
dc.subject
Stroke patients
dc.subject
Generative computational models
dc.subject
Brain dynamics
dc.subject.classification
Neurociencias
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.subject.classification
Medicina Básica
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.title
Generative whole-brain dynamics models from healthy subjects predict functional alterations in stroke at the level of individual patients
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-01-06T15:29:53Z
dc.journal.volume
6
dc.journal.number
4
dc.journal.pagination
1-17
dc.journal.pais
Reino Unido
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.description.fil
Fil: Idesis, Sebastian. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Allegra, Michele. Università di Padova; Italia
dc.description.fil
Fil: Vohryzek, Jakub. Universitat Pompeu Fabra; España
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Metcalf, Nicholas V.. University of Washington; Estados Unidos
dc.description.fil
Fil: Griffis, Joseph C.. University of Washington; Estados Unidos
dc.description.fil
Fil: Corbetta, Maurizio. Università di Padova; Italia
dc.description.fil
Fil: Shulman, Gordon L.. University of Washington; Estados Unidos
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
dc.journal.title
Brain Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/braincomms/article/doi/10.1093/braincomms/fcae237/7713321
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/braincomms/fcae237
Archivos asociados