Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Generative whole-brain dynamics models from healthy subjects predict functional alterations in stroke at the level of individual patients

Idesis, Sebastian; Allegra, Michele; Vohryzek, Jakub; Sanz Perl Hernandez, YonatanIcon ; Metcalf, Nicholas V.; Griffis, Joseph C.; Corbetta, Maurizio; Shulman, Gordon L.; Deco, Gustavo
Fecha de publicación: 07/2024
Editorial: Oxford University Press
Revista: Brain Communications
ISSN: 2632-1297
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurociencias

Resumen

Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy structural connectome that forms the backbone of these models and produce large alterations in inter-regional functional interactions. These interactions are typically measured by correlating the time series of the activity between two brain regions in a process, called resting functional connectivity. We show that adding information about the structural disconnections produced by a patient’s lesion to a whole-brain model previously trained on structural and functional data from a large cohort of healthy subjects enables the prediction of the resting functional connectivity of the patient and fits the model directly to the patient’s data (Pearson correlation = 0.37; mean square error = 0.005). Furthermore, the model dynamics reproduce functional connectivity-based measures that are typically abnormal in stroke patients and measures that specifically isolate these abnormalities. Therefore, although whole-brain models typically involve a large number of free parameters, the results show that, even after fixing those parameters, the model reproduces results from a population very different than that on which the model was trained. In addition to validating the model, these results show that the model mechanistically captures the relationships between the anatomical structure and the functional activity of the human brain.
Palabras clave: Neuroimaging , Stroke patients , Generative computational models , Brain dynamics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.431Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/251961
URL: https://academic.oup.com/braincomms/article/doi/10.1093/braincomms/fcae237/77133
DOI: http://dx.doi.org/10.1093/braincomms/fcae237
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Idesis, Sebastian; Allegra, Michele; Vohryzek, Jakub; Sanz Perl Hernandez, Yonatan; Metcalf, Nicholas V.; et al.; Generative whole-brain dynamics models from healthy subjects predict functional alterations in stroke at the level of individual patients; Oxford University Press; Brain Communications; 6; 4; 7-2024; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES