Mostrar el registro sencillo del ítem

dc.contributor.author
Escrichs, Anira  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Fisher, Patrick M.  
dc.contributor.author
Martínez-Molina, Noelia  
dc.contributor.author
G-Guzman, Elvira  
dc.contributor.author
Frokjaer, Vibe G.  
dc.contributor.author
Kringelbach, Morten L.  
dc.contributor.author
Knudsen, Gitte M.  
dc.contributor.author
Deco, Gustavo  
dc.date.available
2025-01-07T09:47:18Z  
dc.date.issued
2024-09  
dc.identifier.citation
Escrichs, Anira; Sanz Perl Hernandez, Yonatan; Fisher, Patrick M.; Martínez-Molina, Noelia; G-Guzman, Elvira; et al.; Whole-brain turbulent dynamics predict responsiveness to pharmacological treatment in major depressive disorder; Nature Publishing Group; Molecular Psychiatry; 9-2024; 1-11  
dc.identifier.issn
1359-4184  
dc.identifier.uri
http://hdl.handle.net/11336/251829  
dc.description.abstract
Depression is a multifactorial clinical syndrome with a low pharmacological treatment response rate. Therefore, identifying predictors of treatment response capable of providing the basis for future developments of individualized therapies is crucial. Here, we applied model-free and model-based measures of whole-brain turbulent dynamics in resting-state functional magnetic resonance imaging (fMRI) in healthy controls and unmedicated depressed patients. After eight weeks of treatment with selective serotonin reuptake inhibitors (SSRIs), patients were classified as responders and non-responders according to the Hamilton Depression Rating Scale 6 (HAMD6). Using the model-free approach, we found that compared to healthy controls and responder patients, non-responder patients presented disruption of the information transmission across spacetime scales. Furthermore, our results revealed that baseline turbulence level is positively correlated with beneficial pharmacological treatment outcomes. Importantly, our model-free approach enabled prediction of which patients would turn out to be non-responders. Finally, our model-based approach provides mechanistic evidence that non-responder patients are less sensitive to stimulation and, consequently, less prone to respond to treatment. Overall, we demonstrated that different levels of turbulent dynamics are suitable for predicting response to SSRIs treatment in depression.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Neuroimaging  
dc.subject
Depression  
dc.subject
Turbulence  
dc.subject
Whole-brain modelling  
dc.subject.classification
Neurociencias  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Whole-brain turbulent dynamics predict responsiveness to pharmacological treatment in major depressive disorder  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-01-03T11:47:35Z  
dc.journal.pagination
1-11  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Escrichs, Anira. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Fisher, Patrick M.. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Martínez-Molina, Noelia. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: G-Guzman, Elvira. Universitat Pompeu Fabra; España  
dc.description.fil
Fil: Frokjaer, Vibe G.. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Knudsen, Gitte M.. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España  
dc.journal.title
Molecular Psychiatry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41380-024-02690-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41380-024-02690-7