Mostrar el registro sencillo del ítem

dc.contributor.author
Jagabathula, Srikanth  
dc.contributor.author
Mitrofanov, Dmitry  
dc.contributor.author
Vulcano, Gustavo  
dc.date.available
2025-01-06T15:12:22Z  
dc.date.issued
2022-03  
dc.identifier.citation
Jagabathula, Srikanth; Mitrofanov, Dmitry; Vulcano, Gustavo; Personalized Retail Promotions Through a Directed Acyclic Graph–Based Representation of Customer Preferences; Informs; Operations Research; 70; 2; 3-2022; 641-665  
dc.identifier.issn
0030-364X  
dc.identifier.uri
http://hdl.handle.net/11336/251793  
dc.description.abstract
We propose a back-to-back procedure for running personalized promotions in retail operations contexts, from the construction of a nonparametric choice model where customer preferences are represented by directed acyclic graphs (DAGs) to the design of such promotions. The source data includes a history of purchases tagged by customer id, and product availability and promotion data for a category of products. In each customer DAG nodes represent products and directed edges represent the relative preference order between two products. Upon arrival to the store, a customer samples a full ranking of products within the category consistent with her DAG, and purchases the most preferred option among the available ones. We describe the DAG construction process and explain how to mount a parametric, multinomial logit model (MNL) over it. We provide new bounds for the likelihood of a DAG and show how to conduct the MNL estimation. We test our model to predict purchases at the individual level on real retail data and verify that it outperforms state-of-the-art benchmarks. Finally, we illustrate how to use it to run personalized promotions. Our framework leads to significant revenue gains over the sample data that make it an attractive candidate to be tested in practice.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Informs  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Retailing  
dc.subject
Choice models  
dc.subject
Multinomial logit  
dc.subject
Promotion optimization  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Negocios y Administración  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
Personalized Retail Promotions Through a Directed Acyclic Graph–Based Representation of Customer Preferences  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-23T11:45:30Z  
dc.journal.volume
70  
dc.journal.number
2  
dc.journal.pagination
641-665  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Jagabathula, Srikanth. University of New York; Estados Unidos  
dc.description.fil
Fil: Mitrofanov, Dmitry. Boston College; Estados Unidos  
dc.description.fil
Fil: Vulcano, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina  
dc.journal.title
Operations Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubsonline.informs.org/doi/10.1287/opre.2021.2108  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1287/opre.2021.2108