Mostrar el registro sencillo del ítem
dc.contributor.author
Jagabathula, Srikanth
dc.contributor.author
Mitrofanov, Dmitry
dc.contributor.author
Vulcano, Gustavo

dc.date.available
2025-01-06T15:12:22Z
dc.date.issued
2022-03
dc.identifier.citation
Jagabathula, Srikanth; Mitrofanov, Dmitry; Vulcano, Gustavo; Personalized Retail Promotions Through a Directed Acyclic Graph–Based Representation of Customer Preferences; Informs; Operations Research; 70; 2; 3-2022; 641-665
dc.identifier.issn
0030-364X
dc.identifier.uri
http://hdl.handle.net/11336/251793
dc.description.abstract
We propose a back-to-back procedure for running personalized promotions in retail operations contexts, from the construction of a nonparametric choice model where customer preferences are represented by directed acyclic graphs (DAGs) to the design of such promotions. The source data includes a history of purchases tagged by customer id, and product availability and promotion data for a category of products. In each customer DAG nodes represent products and directed edges represent the relative preference order between two products. Upon arrival to the store, a customer samples a full ranking of products within the category consistent with her DAG, and purchases the most preferred option among the available ones. We describe the DAG construction process and explain how to mount a parametric, multinomial logit model (MNL) over it. We provide new bounds for the likelihood of a DAG and show how to conduct the MNL estimation. We test our model to predict purchases at the individual level on real retail data and verify that it outperforms state-of-the-art benchmarks. Finally, we illustrate how to use it to run personalized promotions. Our framework leads to significant revenue gains over the sample data that make it an attractive candidate to be tested in practice.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Informs

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Retailing
dc.subject
Choice models
dc.subject
Multinomial logit
dc.subject
Promotion optimization
dc.subject.classification
Matemática Aplicada

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.subject.classification
Negocios y Administración

dc.subject.classification
Economía y Negocios

dc.subject.classification
CIENCIAS SOCIALES

dc.title
Personalized Retail Promotions Through a Directed Acyclic Graph–Based Representation of Customer Preferences
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-12-23T11:45:30Z
dc.journal.volume
70
dc.journal.number
2
dc.journal.pagination
641-665
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Jagabathula, Srikanth. University of New York; Estados Unidos
dc.description.fil
Fil: Mitrofanov, Dmitry. Boston College; Estados Unidos
dc.description.fil
Fil: Vulcano, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina
dc.journal.title
Operations Research

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubsonline.informs.org/doi/10.1287/opre.2021.2108
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1287/opre.2021.2108
Archivos asociados