Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Personalized Retail Promotions Through a Directed Acyclic Graph–Based Representation of Customer Preferences

Jagabathula, Srikanth; Mitrofanov, Dmitry; Vulcano, GustavoIcon
Fecha de publicación: 03/2022
Editorial: Informs
Revista: Operations Research
ISSN: 0030-364X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Negocios y Administración

Resumen

We propose a back-to-back procedure for running personalized promotions in retail operations contexts, from the construction of a nonparametric choice model where customer preferences are represented by directed acyclic graphs (DAGs) to the design of such promotions. The source data includes a history of purchases tagged by customer id, and product availability and promotion data for a category of products. In each customer DAG nodes represent products and directed edges represent the relative preference order between two products. Upon arrival to the store, a customer samples a full ranking of products within the category consistent with her DAG, and purchases the most preferred option among the available ones. We describe the DAG construction process and explain how to mount a parametric, multinomial logit model (MNL) over it. We provide new bounds for the likelihood of a DAG and show how to conduct the MNL estimation. We test our model to predict purchases at the individual level on real retail data and verify that it outperforms state-of-the-art benchmarks. Finally, we illustrate how to use it to run personalized promotions. Our framework leads to significant revenue gains over the sample data that make it an attractive candidate to be tested in practice.
Palabras clave: Retailing , Choice models , Multinomial logit , Promotion optimization
Ver el registro completo
 
Archivos asociados
Tamaño: 1.538Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/251793
URL: https://pubsonline.informs.org/doi/10.1287/opre.2021.2108
DOI: https://doi.org/10.1287/opre.2021.2108
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Jagabathula, Srikanth; Mitrofanov, Dmitry; Vulcano, Gustavo; Personalized Retail Promotions Through a Directed Acyclic Graph–Based Representation of Customer Preferences; Informs; Operations Research; 70; 2; 3-2022; 641-665
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES