Mostrar el registro sencillo del ítem

dc.contributor.author
Berbeglia, Gerardo  
dc.contributor.author
Garassino, Agustín  
dc.contributor.author
Vulcano, Gustavo  
dc.date.available
2025-01-06T15:10:13Z  
dc.date.issued
2022-06  
dc.identifier.citation
Berbeglia, Gerardo; Garassino, Agustín; Vulcano, Gustavo; A Comparative Empirical Study of Discrete Choice Models in Retail Operations; Informs; Management Science; 68; 6; 6-2022; 4005-4023  
dc.identifier.issn
0025-1909  
dc.identifier.uri
http://hdl.handle.net/11336/251788  
dc.description.abstract
Choice-based demand estimation is a fundamental task in retail operations and revenue management, providing necessary input data for inventory control, assortment, and price-optimization models. The task is particularly difficult in operational contexts where product availability varies over time and customers may substitute into the available options. In addition to the classical multinomial logit (MNL) model and extensions (e.g., nested logit, mixed logit, and latent-class MNL), new demand models have been proposed (e.g., the Markov chain model), and others have been recently revisited (e.g., the rank list-based and exponomial models). At the same time, new computational approaches were developed to ease the estimation function (e.g., column-generation and expectation-maximization (EM) algorithms). In this paper, we conduct a systematic, empirical study of different choice-based demand models and estimation algorithms, including both maximum-likelihood and least-squares criteria. Through an exhaustive set of numerical experiments on synthetic, semisynthetic, and real data, we provide comparative statistics of the predictive power and derived revenue performance of an ample collection of choice models and characterize operational environments suitable for different model/estimation implementations. We also provide a survey of all the discrete choice models evaluated and share all our estimation codes and data sets as part of the online appendix.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Informs  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Demand estimation  
dc.subject
Consumer preferences  
dc.subject
Choice behavior  
dc.subject
Maximum likelihood estimation  
dc.subject
Least squares estimation  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Comparative Empirical Study of Discrete Choice Models in Retail Operations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-23T11:45:21Z  
dc.journal.volume
68  
dc.journal.number
6  
dc.journal.pagination
4005-4023  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Berbeglia, Gerardo. University of Melbourne; Australia  
dc.description.fil
Fil: Garassino, Agustín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.description.fil
Fil: Vulcano, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina  
dc.journal.title
Management Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubsonline.informs.org/doi/10.1287/mnsc.2021.4069  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1287/mnsc.2021.4069