Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Comparative Empirical Study of Discrete Choice Models in Retail Operations

Berbeglia, Gerardo; Garassino, Agustín; Vulcano, GustavoIcon
Fecha de publicación: 06/2022
Editorial: Informs
Revista: Management Science
ISSN: 0025-1909
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Ciencias de la Computación; Estadística y Probabilidad

Resumen

Choice-based demand estimation is a fundamental task in retail operations and revenue management, providing necessary input data for inventory control, assortment, and price-optimization models. The task is particularly difficult in operational contexts where product availability varies over time and customers may substitute into the available options. In addition to the classical multinomial logit (MNL) model and extensions (e.g., nested logit, mixed logit, and latent-class MNL), new demand models have been proposed (e.g., the Markov chain model), and others have been recently revisited (e.g., the rank list-based and exponomial models). At the same time, new computational approaches were developed to ease the estimation function (e.g., column-generation and expectation-maximization (EM) algorithms). In this paper, we conduct a systematic, empirical study of different choice-based demand models and estimation algorithms, including both maximum-likelihood and least-squares criteria. Through an exhaustive set of numerical experiments on synthetic, semisynthetic, and real data, we provide comparative statistics of the predictive power and derived revenue performance of an ample collection of choice models and characterize operational environments suitable for different model/estimation implementations. We also provide a survey of all the discrete choice models evaluated and share all our estimation codes and data sets as part of the online appendix.
Palabras clave: Demand estimation , Consumer preferences , Choice behavior , Maximum likelihood estimation , Least squares estimation
Ver el registro completo
 
Archivos asociados
Tamaño: 2.217Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/251788
URL: https://pubsonline.informs.org/doi/10.1287/mnsc.2021.4069
DOI: https://doi.org/10.1287/mnsc.2021.4069
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Berbeglia, Gerardo; Garassino, Agustín; Vulcano, Gustavo; A Comparative Empirical Study of Discrete Choice Models in Retail Operations; Informs; Management Science; 68; 6; 6-2022; 4005-4023
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES