Mostrar el registro sencillo del ítem
dc.contributor.author
Alarcón, Rodrigo G.
dc.contributor.author
Alarcón, Martín A.
dc.contributor.author
González, Alejandro Hernán

dc.contributor.author
Ferramosca, Antonio
dc.date.available
2025-01-02T12:58:16Z
dc.date.issued
2024-10
dc.identifier.citation
Alarcón, Rodrigo G.; Alarcón, Martín A.; González, Alejandro Hernán; Ferramosca, Antonio; Artificial Neural Networks for Energy Demand Prediction in an Economic MPC‐Based Energy Management System; John Wiley & Sons Ltd; International Journal of Robust and Nonlinear Control; 35; 2; 10-2024; 642-658
dc.identifier.issn
1049-8923
dc.identifier.uri
http://hdl.handle.net/11336/251492
dc.description.abstract
Microgrids are a development trend and have attracted a lot of attention worldwide. The control system plays a crucial role inimplementing these systems and, due to their complexity, artificial intelligence techniques represent some enabling technologiesfor their future development and success. In this paper, we propose a novel formulation of an economic model predictive control(economic MPC) applied to a microgrid designed for a faculty building with the inclusion of a predictive model to deal with theenergy demand disturbance using a recurrent neural network of the long short-term memory (RNN-LSTM). First, we develop aframework to identify an RNN-LSTM using historical data registered by a smart three-phase power quality analyzer to providefeedforward power demand predictions.Next, we present an economicMPCformulation that includes the prediction model for thedisturbance within the optimization problem to be solved by the MPC strategy.We carried out simulations with different scenariosof energy consumption, available resources, and simulation times to highlight the results obtained and analyze the performanceof the energy management system. In all cases, we observed the correct operation of the proposed control scheme, complying atall times with the objectives and operational restrictions imposed on the system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORK
dc.subject
DEEP LEARNING
dc.subject
DISTRUBANCE PREDICTION
dc.subject
MICROGRID
dc.subject
ECONOMIC MODEL PREDICTIVE CONTROL
dc.subject.classification
Sistemas de Automatización y Control

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Artificial Neural Networks for Energy Demand Prediction in an Economic MPC‐Based Energy Management System
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-25T12:47:45Z
dc.journal.volume
35
dc.journal.number
2
dc.journal.pagination
642-658
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Alarcón, Rodrigo G.. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Alarcón, Martín A.. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Ferramosca, Antonio. Universidad de Bergamo; Italia
dc.journal.title
International Journal of Robust and Nonlinear Control

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/rnc.7671
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/rnc.7671
Archivos asociados