Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial Neural Networks for Energy Demand Prediction in an Economic MPC‐Based Energy Management System

Alarcón, Rodrigo G.; Alarcón, Martín A.; González, Alejandro HernánIcon ; Ferramosca, Antonio
Fecha de publicación: 10/2024
Editorial: John Wiley & Sons Ltd
Revista: International Journal of Robust and Nonlinear Control
ISSN: 1049-8923
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

Microgrids are a development trend and have attracted a lot of attention worldwide. The control system plays a crucial role inimplementing these systems and, due to their complexity, artificial intelligence techniques represent some enabling technologiesfor their future development and success. In this paper, we propose a novel formulation of an economic model predictive control(economic MPC) applied to a microgrid designed for a faculty building with the inclusion of a predictive model to deal with theenergy demand disturbance using a recurrent neural network of the long short-term memory (RNN-LSTM). First, we develop aframework to identify an RNN-LSTM using historical data registered by a smart three-phase power quality analyzer to providefeedforward power demand predictions.Next, we present an economicMPCformulation that includes the prediction model for thedisturbance within the optimization problem to be solved by the MPC strategy.We carried out simulations with different scenariosof energy consumption, available resources, and simulation times to highlight the results obtained and analyze the performanceof the energy management system. In all cases, we observed the correct operation of the proposed control scheme, complying atall times with the objectives and operational restrictions imposed on the system.
Palabras clave: ARTIFICIAL NEURAL NETWORK , DEEP LEARNING , DISTRUBANCE PREDICTION , MICROGRID , ECONOMIC MODEL PREDICTIVE CONTROL
Ver el registro completo
 
Archivos asociados
Tamaño: 1.381Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/251492
URL: https://onlinelibrary.wiley.com/doi/10.1002/rnc.7671
DOI: http://dx.doi.org/10.1002/rnc.7671
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Alarcón, Rodrigo G.; Alarcón, Martín A.; González, Alejandro Hernán; Ferramosca, Antonio; Artificial Neural Networks for Energy Demand Prediction in an Economic MPC‐Based Energy Management System; John Wiley & Sons Ltd; International Journal of Robust and Nonlinear Control; 35; 2; 10-2024; 642-658
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES