Mostrar el registro sencillo del ítem

dc.contributor.author
Larotonda, Gabriel Andrés  
dc.contributor.author
Rey, Ivan  
dc.date.available
2025-01-02T10:23:53Z  
dc.date.issued
2023-08  
dc.identifier.citation
Larotonda, Gabriel Andrés; Rey, Ivan; Weakly invariant norms: geometry of spheres in the space of skew-Hermitian matrices; Elsevier Science Inc.; Linear Algebra and its Applications; 678; 8-2023; 136-168  
dc.identifier.issn
0024-3795  
dc.identifier.uri
http://hdl.handle.net/11336/251426  
dc.description.abstract
Let N be a weakly unitarily invariant norm (i.e. invariant for the coadjoint action of the unitary group) in the space of skew-Hermitian matrices un(c). In this paper we study the geometry of the unit sphere of such a norm, and we show how its geometric properties are encoded by the majorization properties of the eigenvalues of the matrices. We give a detailed characterization of norming functionals of elements for a given norm, and we then prove a sharp criterion for the commutator [X,[X,V]] to be in the hyperplane that supports V in the unit sphere. We show that the adjoint action v→V+[X,V] of un(c) on itself pushes vectors away from the unit sphere. As an application of the previous results, for a strictly convex norm, we prove that the norm is preserved by this last action if and only if X commutes with V. We give a more detailed description in the case of any weakly Ad-invariant norm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADJOINT ACTION  
dc.subject
CONVEX SET  
dc.subject
FINSLER NORM  
dc.subject
MAJORIZATION  
dc.subject
NORMING FUNCTIONAL  
dc.subject
POLYTOPE  
dc.subject
SKEWHERMITIAN MATRIX  
dc.subject
SUPPORTING HYPERPLANE  
dc.subject
UNITARILY INVARIANT NORM  
dc.subject
WEAKLY INVARIANT NORM  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Weakly invariant norms: geometry of spheres in the space of skew-Hermitian matrices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-26T12:32:52Z  
dc.journal.volume
678  
dc.journal.pagination
136-168  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
dam  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Rey, Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Linear Algebra and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.laa.2023.08.023  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379523003282?via%3Dihub