Artículo
Weakly invariant norms: geometry of spheres in the space of skew-Hermitian matrices
Fecha de publicación:
08/2023
Editorial:
Elsevier Science Inc.
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let N be a weakly unitarily invariant norm (i.e. invariant for the coadjoint action of the unitary group) in the space of skew-Hermitian matrices un(c). In this paper we study the geometry of the unit sphere of such a norm, and we show how its geometric properties are encoded by the majorization properties of the eigenvalues of the matrices. We give a detailed characterization of norming functionals of elements for a given norm, and we then prove a sharp criterion for the commutator [X,[X,V]] to be in the hyperplane that supports V in the unit sphere. We show that the adjoint action v→V+[X,V] of un(c) on itself pushes vectors away from the unit sphere. As an application of the previous results, for a strictly convex norm, we prove that the norm is preserved by this last action if and only if X commutes with V. We give a more detailed description in the case of any weakly Ad-invariant norm.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Larotonda, Gabriel Andrés; Rey, Ivan; Weakly invariant norms: geometry of spheres in the space of skew-Hermitian matrices; Elsevier Science Inc.; Linear Algebra and its Applications; 678; 8-2023; 136-168
Compartir
Altmétricas