Mostrar el registro sencillo del ítem
dc.contributor.author
Young, Sean I.
dc.contributor.author
Dalca, Adrian V.
dc.contributor.author
Ferrante, Enzo

dc.contributor.author
Golland, Polina
dc.contributor.author
Metzler, Christopher A.
dc.contributor.author
Fischl, Bruce
dc.contributor.author
Iglesias, Juan Eugenio
dc.date.available
2024-12-23T09:38:00Z
dc.date.issued
2023-05
dc.identifier.citation
Young, Sean I.; Dalca, Adrian V.; Ferrante, Enzo; Golland, Polina; Metzler, Christopher A.; et al.; Supervision by Denoising; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 5-2023; 1-12
dc.identifier.issn
0162-8828
dc.identifier.uri
http://hdl.handle.net/11336/250979
dc.description.abstract
Learning-based image reconstruction models, such as those based on the U-Net, require a large set of labeled images if good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel- or voxel-level label accuracy are scarce due to the cost of acquiring them. This problem is exacerbated further in domains like medical imaging, where there is no single ground truth label, resulting in large amounts of repeat variability in the labels. Therefore, training reconstruction networks to generalize better by learning from both labeled and unlabeled examples (called semi-supervised learning) is problem of practical and theoretical interest. However, traditional semi-supervised learning methods for image reconstruction often necessitate handcrafting a differentiable regularizer specific to some given imaging problem, which can be extremely time-consuming. In this work, we propose “supervision by denoising” (SUD), a framework to supervise reconstruction models using their own denoised output as labels. SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and model weight update steps in an optimization framework for semi-supervision. As example applications, we apply SUD to two problems from biomedical imaging—anatomical brain reconstruction (3D) and cortical parcellation (2D)—to demonstrate a significant improvement in reconstruction over supervised-only and ensembling baselines.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IEEE Computer Society

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
deep learning
dc.subject
regularization
dc.subject
medical image segmentation
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Supervision by Denoising
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-22T14:22:04Z
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Young, Sean I.. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Dalca, Adrian V.. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Golland, Polina. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Metzler, Christopher A.. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Fischl, Bruce. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Iglesias, Juan Eugenio. Massachusetts Institute of Technology; Estados Unidos
dc.journal.title
IEEE Transactions on Pattern Analysis and Machine Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TPAMI.2023.3299789
Archivos asociados