Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Supervision by Denoising

Young, Sean I.; Dalca, Adrian V.; Ferrante, EnzoIcon ; Golland, Polina; Metzler, Christopher A.; Fischl, Bruce; Iglesias, Juan Eugenio
Fecha de publicación: 05/2023
Editorial: IEEE Computer Society
Revista: IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN: 0162-8828
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Learning-based image reconstruction models, such as those based on the U-Net, require a large set of labeled images if good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel- or voxel-level label accuracy are scarce due to the cost of acquiring them. This problem is exacerbated further in domains like medical imaging, where there is no single ground truth label, resulting in large amounts of repeat variability in the labels. Therefore, training reconstruction networks to generalize better by learning from both labeled and unlabeled examples (called semi-supervised learning) is problem of practical and theoretical interest. However, traditional semi-supervised learning methods for image reconstruction often necessitate handcrafting a differentiable regularizer specific to some given imaging problem, which can be extremely time-consuming. In this work, we propose “supervision by denoising” (SUD), a framework to supervise reconstruction models using their own denoised output as labels. SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and model weight update steps in an optimization framework for semi-supervision. As example applications, we apply SUD to two problems from biomedical imaging—anatomical brain reconstruction (3D) and cortical parcellation (2D)—to demonstrate a significant improvement in reconstruction over supervised-only and ensembling baselines.
Palabras clave: deep learning , regularization , medical image segmentation
Ver el registro completo
 
Archivos asociados
Tamaño: 18.42Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/250979
DOI: http://dx.doi.org/10.1109/TPAMI.2023.3299789
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Young, Sean I.; Dalca, Adrian V.; Ferrante, Enzo; Golland, Polina; Metzler, Christopher A.; et al.; Supervision by Denoising; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 5-2023; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES