Mostrar el registro sencillo del ítem
dc.contributor.author
Alejo, Osvaldo Javier
dc.contributor.author
Galvao, Antonio F.
dc.contributor.author
Montes Rojas, Gabriel Victorio
dc.date.available
2024-12-12T10:46:25Z
dc.date.issued
2023-09
dc.identifier.citation
Alejo, Osvaldo Javier; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; A first-stage representation for instrumental variables quantile regression; Wiley Blackwell Publishing, Inc; Econometrics Journal; 26; 3; 9-2023; 350-377
dc.identifier.issn
1368-4221
dc.identifier.uri
http://hdl.handle.net/11336/250294
dc.description.abstract
This paper develops a first-stage linear regression representation for an instrumental variables (IV) quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, i.e., a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. We also show that the required Jacobian identification conditions for IVQR models are embedded in the quantile first stage. We then suggest procedures to evaluate the validity of instruments by evaluating their statistical significance using the first-stage representation. Monte Carlo experiments provide numerical evidence that the proposed tests work as expected in terms of empirical size and power. An empirical application illustrates the methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
first stage
dc.subject
instrumental variables
dc.subject
quantile regression
dc.subject.classification
Economía, Econometría
dc.subject.classification
Economía y Negocios
dc.subject.classification
CIENCIAS SOCIALES
dc.title
A first-stage representation for instrumental variables quantile regression
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-12-02T15:25:30Z
dc.journal.volume
26
dc.journal.number
3
dc.journal.pagination
350-377
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Alejo, Osvaldo Javier. Universidad de la Republica; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Galvao, Antonio F.. Michigan State University; Estados Unidos
dc.description.fil
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Departamento de Economía; Argentina
dc.journal.title
Econometrics Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ectj/article/26/3/350/7100955
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/ectj/utad010
Archivos asociados