Mostrar el registro sencillo del ítem

dc.contributor.author
Alejo, Osvaldo Javier  
dc.contributor.author
Galvao, Antonio F.  
dc.contributor.author
Montes Rojas, Gabriel Victorio  
dc.date.available
2024-12-12T10:46:25Z  
dc.date.issued
2023-09  
dc.identifier.citation
Alejo, Osvaldo Javier; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; A first-stage representation for instrumental variables quantile regression; Wiley Blackwell Publishing, Inc; Econometrics Journal; 26; 3; 9-2023; 350-377  
dc.identifier.issn
1368-4221  
dc.identifier.uri
http://hdl.handle.net/11336/250294  
dc.description.abstract
This paper develops a first-stage linear regression representation for an instrumental variables (IV) quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, i.e., a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. We also show that the required Jacobian identification conditions for IVQR models are embedded in the quantile first stage. We then suggest procedures to evaluate the validity of instruments by evaluating their statistical significance using the first-stage representation. Monte Carlo experiments provide numerical evidence that the proposed tests work as expected in terms of empirical size and power. An empirical application illustrates the methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
first stage  
dc.subject
instrumental variables  
dc.subject
quantile regression  
dc.subject.classification
Economía, Econometría  
dc.subject.classification
Economía y Negocios  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
A first-stage representation for instrumental variables quantile regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-12-02T15:25:30Z  
dc.journal.volume
26  
dc.journal.number
3  
dc.journal.pagination
350-377  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Alejo, Osvaldo Javier. Universidad de la Republica; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Galvao, Antonio F.. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Departamento de Economía; Argentina  
dc.journal.title
Econometrics Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ectj/article/26/3/350/7100955  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/ectj/utad010