Artículo
A first-stage representation for instrumental variables quantile regression
Fecha de publicación:
09/2023
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Econometrics Journal
ISSN:
1368-4221
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper develops a first-stage linear regression representation for an instrumental variables (IV) quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, i.e., a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. We also show that the required Jacobian identification conditions for IVQR models are embedded in the quantile first stage. We then suggest procedures to evaluate the validity of instruments by evaluating their statistical significance using the first-stage representation. Monte Carlo experiments provide numerical evidence that the proposed tests work as expected in terms of empirical size and power. An empirical application illustrates the methods.
Palabras clave:
first stage
,
instrumental variables
,
quantile regression
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Citación
Alejo, Osvaldo Javier; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; A first-stage representation for instrumental variables quantile regression; Wiley Blackwell Publishing, Inc; Econometrics Journal; 26; 3; 9-2023; 350-377
Compartir
Altmétricas