Mostrar el registro sencillo del ítem
dc.contributor.author
Frixione, Martín Guillermo

dc.contributor.author
Roffet, Facundo Alejandro

dc.contributor.author
Adami, Miguel Angel

dc.contributor.author
Bertellotti, Néstor Marcelo

dc.contributor.author
D'amico, Veronica Laura

dc.contributor.author
Delrieux, Claudio Augusto

dc.contributor.author
Pollicelli, Maria Debora

dc.date.available
2024-12-11T10:13:55Z
dc.date.issued
2024-05-28
dc.identifier.citation
Frixione, Martín Guillermo; Roffet, Facundo Alejandro; Adami, Miguel Angel; Bertellotti, Néstor Marcelo; D'amico, Veronica Laura; et al.; Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird; MDPI; Mathematical and Computational Applications; 29; 3; 28-5-2024; 1-13
dc.identifier.issn
2297-8747
dc.identifier.uri
http://hdl.handle.net/11336/250119
dc.description.abstract
Recently, nuclear abnormalities in avian erythrocytes have been used as biomarkers of genotoxicity in several species. Anomalous shapes are usually detected in the nuclei by means of microscopy inspection. However, due to inter- and intra-observer variability, the classification of theseblood cell abnormalities could be problematic for replicating research. Deep learning, as a powerful image analysis technique, can be used in this context to improve standardization in identifying the biological configurations of medical and veterinary importance. In this study, we present a standardized deep learning model for identifying and classifying abnormal shapes in erythrocyte nuclei in blood smears of the hemispheric and synanthropic kelp gulls (Larus dominicanus). We trained three convolutional backbones (ResNet34, ResNet50, and ResNet101 architectures) to obtain models capable of detecting and classifying these abnormalities in blood cells. The analysis was performed at three discrimination levels of classification, with broad categories subdivided into increasingly specific subcategories (level 1: ?normal?, ?abnormal?, ?other?; level 2: ?normal?, ?ENAs?, ?micronucleus?, ?other?; level 3: ?normal?, ?irregular?, ?displaced?, ?enucleated?, ?micronucleus?, ?other?). The results were more than adequate and very similar in levels 1 and 2 (F1-score 84.6% and 83.6%, and accuracy 83.9% and 82.6%). In level 3, performance was lower (F1-score 65.9% and accuracy 80.8%). It can be concluded that the level 2 analysis should be considered the most appropriate as it is more specific than level 1, with similar quality of performance. This method has proven to be a fast, efficient, and standardized approach that reduces the dependence on human supervision in the classification of nuclear abnormalities in avian erythrocytes, and can be adapted to be used in similar contexts with reduced effort.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
deep learning
dc.subject
genotoxicity
dc.subject
avian erythrocytes
dc.subject
kelp gulls
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-07-23T15:22:13Z
dc.journal.volume
29
dc.journal.number
3
dc.journal.pagination
1-13
dc.journal.pais
Suiza

dc.description.fil
Fil: Frixione, Martín Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
dc.description.fil
Fil: Roffet, Facundo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Adami, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
dc.description.fil
Fil: Bertellotti, Néstor Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
dc.description.fil
Fil: D'amico, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Pollicelli, Maria Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina
dc.journal.title
Mathematical and Computational Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2297-8747/29/3/41
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/mca29030041
Archivos asociados