Mostrar el registro sencillo del ítem

dc.contributor.author
Frixione, Martín Guillermo  
dc.contributor.author
Roffet, Facundo Alejandro  
dc.contributor.author
Adami, Miguel Angel  
dc.contributor.author
Bertellotti, Néstor Marcelo  
dc.contributor.author
D'amico, Veronica Laura  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Pollicelli, Maria Debora  
dc.date.available
2024-12-11T10:13:55Z  
dc.date.issued
2024-05-28  
dc.identifier.citation
Frixione, Martín Guillermo; Roffet, Facundo Alejandro; Adami, Miguel Angel; Bertellotti, Néstor Marcelo; D'amico, Veronica Laura; et al.; Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird; MDPI; Mathematical and Computational Applications; 29; 3; 28-5-2024; 1-13  
dc.identifier.issn
2297-8747  
dc.identifier.uri
http://hdl.handle.net/11336/250119  
dc.description.abstract
Recently, nuclear abnormalities in avian erythrocytes have been used as biomarkers of genotoxicity in several species. Anomalous shapes are usually detected in the nuclei by means of microscopy inspection. However, due to inter- and intra-observer variability, the classification of theseblood cell abnormalities could be problematic for replicating research. Deep learning, as a powerful image analysis technique, can be used in this context to improve standardization in identifying the biological configurations of medical and veterinary importance. In this study, we present a standardized deep learning model for identifying and classifying abnormal shapes in erythrocyte nuclei in blood smears of the hemispheric and synanthropic kelp gulls (Larus dominicanus). We trained three convolutional backbones (ResNet34, ResNet50, and ResNet101 architectures) to obtain models capable of detecting and classifying these abnormalities in blood cells. The analysis was performed at three discrimination levels of classification, with broad categories subdivided into increasingly specific subcategories (level 1: ?normal?, ?abnormal?, ?other?; level 2: ?normal?, ?ENAs?, ?micronucleus?, ?other?; level 3: ?normal?, ?irregular?, ?displaced?, ?enucleated?, ?micronucleus?, ?other?). The results were more than adequate and very similar in levels 1 and 2 (F1-score 84.6% and 83.6%, and accuracy 83.9% and 82.6%). In level 3, performance was lower (F1-score 65.9% and accuracy 80.8%). It can be concluded that the level 2 analysis should be considered the most appropriate as it is more specific than level 1, with similar quality of performance. This method has proven to be a fast, efficient, and standardized approach that reduces the dependence on human supervision in the classification of nuclear abnormalities in avian erythrocytes, and can be adapted to be used in similar contexts with reduced effort.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
deep learning  
dc.subject
genotoxicity  
dc.subject
avian erythrocytes  
dc.subject
kelp gulls  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-07-23T15:22:13Z  
dc.journal.volume
29  
dc.journal.number
3  
dc.journal.pagination
1-13  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Frixione, Martín Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina  
dc.description.fil
Fil: Roffet, Facundo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Adami, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina  
dc.description.fil
Fil: Bertellotti, Néstor Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina  
dc.description.fil
Fil: D'amico, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Pollicelli, Maria Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina  
dc.journal.title
Mathematical and Computational Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2297-8747/29/3/41  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/mca29030041