Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird

Frixione, Martín GuillermoIcon ; Roffet, Facundo AlejandroIcon ; Adami, Miguel AngelIcon ; Bertellotti, Néstor MarceloIcon ; D'amico, Veronica LauraIcon ; Delrieux, Claudio AugustoIcon ; Pollicelli, Maria DeboraIcon
Fecha de publicación: 28/05/2024
Editorial: MDPI
Revista: Mathematical and Computational Applications
ISSN: 2297-8747
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Recently, nuclear abnormalities in avian erythrocytes have been used as biomarkers of genotoxicity in several species. Anomalous shapes are usually detected in the nuclei by means of microscopy inspection. However, due to inter- and intra-observer variability, the classification of theseblood cell abnormalities could be problematic for replicating research. Deep learning, as a powerful image analysis technique, can be used in this context to improve standardization in identifying the biological configurations of medical and veterinary importance. In this study, we present a standardized deep learning model for identifying and classifying abnormal shapes in erythrocyte nuclei in blood smears of the hemispheric and synanthropic kelp gulls (Larus dominicanus). We trained three convolutional backbones (ResNet34, ResNet50, and ResNet101 architectures) to obtain models capable of detecting and classifying these abnormalities in blood cells. The analysis was performed at three discrimination levels of classification, with broad categories subdivided into increasingly specific subcategories (level 1: ?normal?, ?abnormal?, ?other?; level 2: ?normal?, ?ENAs?, ?micronucleus?, ?other?; level 3: ?normal?, ?irregular?, ?displaced?, ?enucleated?, ?micronucleus?, ?other?). The results were more than adequate and very similar in levels 1 and 2 (F1-score 84.6% and 83.6%, and accuracy 83.9% and 82.6%). In level 3, performance was lower (F1-score 65.9% and accuracy 80.8%). It can be concluded that the level 2 analysis should be considered the most appropriate as it is more specific than level 1, with similar quality of performance. This method has proven to be a fast, efficient, and standardized approach that reduces the dependence on human supervision in the classification of nuclear abnormalities in avian erythrocytes, and can be adapted to be used in similar contexts with reduced effort.
Palabras clave: deep learning , genotoxicity , avian erythrocytes , kelp gulls
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.613Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/250119
URL: https://www.mdpi.com/2297-8747/29/3/41
DOI: http://dx.doi.org/10.3390/mca29030041
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(CESIMAR)
Articulos de CENTRO PARA EL ESTUDIO DE SISTEMAS MARINOS
Citación
Frixione, Martín Guillermo; Roffet, Facundo Alejandro; Adami, Miguel Angel; Bertellotti, Néstor Marcelo; D'amico, Veronica Laura; et al.; Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird; MDPI; Mathematical and Computational Applications; 29; 3; 28-5-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES