Mostrar el registro sencillo del ítem

dc.contributor.author
Barmak, Jonathan Ariel  
dc.date.available
2024-12-09T23:54:11Z  
dc.date.issued
2023-04  
dc.identifier.citation
Barmak, Jonathan Ariel; Connectivity of Ample, Conic, and Random Simplicial Complexes; Oxford University Press; International Mathematics Research Notices; 2023; 8; 4-2023; 6579-6597  
dc.identifier.issn
1073-7928  
dc.identifier.uri
http://hdl.handle.net/11336/249951  
dc.description.abstract
A simplicial complex is r-conic if every subcomplex of at most r vertices is contained in the star of a vertex. A 4-conic complex is simply connected. We prove that an 8-conic complex is 2-connected. In general a (2n+1)-conic complex need not be n-connected but a 5n-conic complex is n-connected. This extends results by Even-Zohar, Farber, and Mead on ample complexes and answers two questions raised in their paper. Our results together with theirs imply that the probability of a complex being n-connected tends to 1 as the number of vertices tends to ∞⁠. Our model here is the medial regime.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SIMPLICIAL COMPLEX  
dc.subject
CONNECTIVITY  
dc.subject
RANDOM COMPLEX  
dc.subject
SIMPLICIAL APPROXIMATION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Connectivity of Ample, Conic, and Random Simplicial Complexes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-27T15:29:32Z  
dc.journal.volume
2023  
dc.journal.number
8  
dc.journal.pagination
6579-6597  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
International Mathematics Research Notices  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1093/imrn/rnac030  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2023/8/6579/6541287?redirectedFrom=fulltext