Artículo
Connectivity of Ample, Conic, and Random Simplicial Complexes
Fecha de publicación:
04/2023
Editorial:
Oxford University Press
Revista:
International Mathematics Research Notices
ISSN:
1073-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A simplicial complex is r-conic if every subcomplex of at most r vertices is contained in the star of a vertex. A 4-conic complex is simply connected. We prove that an 8-conic complex is 2-connected. In general a (2n+1)-conic complex need not be n-connected but a 5n-conic complex is n-connected. This extends results by Even-Zohar, Farber, and Mead on ample complexes and answers two questions raised in their paper. Our results together with theirs imply that the probability of a complex being n-connected tends to 1 as the number of vertices tends to ∞. Our model here is the medial regime.
Palabras clave:
SIMPLICIAL COMPLEX
,
CONNECTIVITY
,
RANDOM COMPLEX
,
SIMPLICIAL APPROXIMATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barmak, Jonathan Ariel; Connectivity of Ample, Conic, and Random Simplicial Complexes; Oxford University Press; International Mathematics Research Notices; 2023; 8; 4-2023; 6579-6597
Compartir
Altmétricas