Mostrar el registro sencillo del ítem
dc.contributor.author
Cibils, Claude
dc.contributor.author
Lanzilotta, Marcelo
dc.contributor.author
Marcos, Eduardo N.
dc.contributor.author
Solotar, Andrea Leonor
dc.date.available
2024-12-09T17:31:22Z
dc.date.issued
2023-10
dc.identifier.citation
Cibils, Claude; Lanzilotta, Marcelo; Marcos, Eduardo N.; Solotar, Andrea Leonor; Strongly stratifying ideals, Morita contexts and Hochschild homology; Academic Press Inc Elsevier Science; Journal of Algebra; 639; 10-2023; 120-149
dc.identifier.issn
0021-8693
dc.identifier.uri
http://hdl.handle.net/11336/249903
dc.description.abstract
We consider stratifying ideals of finite dimensional algebras in relation with Morita contexts. A Morita context is an algebra built on a data consisting of two algebras, two bimodules and two morphisms. For a strongly stratifying Morita context - or equivalently for a strongly stratifying ideal - we show that Han’s conjecture holds if and only if it holds for the diagonal subalgebra. The main tool is the Jacobi-Zariski long exact sequence. One of the main consequences is that Han’s conjecture holds for an algebra admitting a strongly (co- )stratifying chain whose steps verify Han’s conjecture.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HOCHSCHILD
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Strongly stratifying ideals, Morita contexts and Hochschild homology
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-27T15:30:04Z
dc.journal.volume
639
dc.journal.pagination
120-149
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Cibils, Claude. Université Montpellier II; Francia
dc.description.fil
Fil: Lanzilotta, Marcelo. Universidad de la República; Uruguay
dc.description.fil
Fil: Marcos, Eduardo N.. Universidade de Sao Paulo; Brasil
dc.description.fil
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Journal of Algebra
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2023.09.044
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869323005124
Archivos asociados