Artículo
Strongly stratifying ideals, Morita contexts and Hochschild homology
Fecha de publicación:
10/2023
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider stratifying ideals of finite dimensional algebras in relation with Morita contexts. A Morita context is an algebra built on a data consisting of two algebras, two bimodules and two morphisms. For a strongly stratifying Morita context - or equivalently for a strongly stratifying ideal - we show that Han’s conjecture holds if and only if it holds for the diagonal subalgebra. The main tool is the Jacobi-Zariski long exact sequence. One of the main consequences is that Han’s conjecture holds for an algebra admitting a strongly (co- )stratifying chain whose steps verify Han’s conjecture.
Palabras clave:
HOCHSCHILD
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cibils, Claude; Lanzilotta, Marcelo; Marcos, Eduardo N.; Solotar, Andrea Leonor; Strongly stratifying ideals, Morita contexts and Hochschild homology; Academic Press Inc Elsevier Science; Journal of Algebra; 639; 10-2023; 120-149
Compartir
Altmétricas