Mostrar el registro sencillo del ítem

dc.contributor.author
Pinasco, Juan Pablo  
dc.contributor.author
Saintier, Nicolas Bernard Claude  
dc.contributor.author
Kind, Martin  
dc.date.available
2024-11-27T13:39:50Z  
dc.date.issued
2023-06  
dc.identifier.citation
Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Kind, Martin; Learning, Mean Field Approximations, and Phase Transitions in Auction Models; Springer; Dynamic Games and Applications; 14; 2; 6-2023; 396-427  
dc.identifier.uri
http://hdl.handle.net/11336/248784  
dc.description.abstract
In this paper, we study an agent-based model for multi-round, pay as bid, sealed bid reverse auctions using techniques from partial differential equations and statistical mechanics tools. We assume that in each round a fixed fraction of bidders is awarded, and bidders learn from round to round using simple microscopic rules, adjusting myopically their bid according to their performance. Agent-based simulations show that bidders coordinate in the sense that they tend to bid the same value in the long-time limit. Moreover, this common value is the true cost or the ceiling price of the auction, depending on the level of competition. A discontinuous phase transition occurs when half of the bidders win. We establish the corresponding rate equations, and we obtain a system of ordinary differential equations describing the dynamics. Finally, we derive formally the kinetic equations modeling the dynamics, and we study the asymptotic behavior of solutions of the corresponding first-order, nonlinear partial differential equation satisfied by the distribution of agents.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Game theory  
dc.subject
Auction  
dc.subject
Kinetic equations  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning, Mean Field Approximations, and Phase Transitions in Auction Models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-25T15:40:32Z  
dc.identifier.eissn
2153-0793  
dc.journal.volume
14  
dc.journal.number
2  
dc.journal.pagination
396-427  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Kind, Martin. Greenmap; Bélgica  
dc.journal.title
Dynamic Games and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13235-023-00508-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13235-023-00508-9