Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning, Mean Field Approximations, and Phase Transitions in Auction Models

Pinasco, Juan PabloIcon ; Saintier, Nicolas Bernard ClaudeIcon ; Kind, Martin
Fecha de publicación: 06/2023
Editorial: Springer
Revista: Dynamic Games and Applications
e-ISSN: 2153-0793
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper, we study an agent-based model for multi-round, pay as bid, sealed bid reverse auctions using techniques from partial differential equations and statistical mechanics tools. We assume that in each round a fixed fraction of bidders is awarded, and bidders learn from round to round using simple microscopic rules, adjusting myopically their bid according to their performance. Agent-based simulations show that bidders coordinate in the sense that they tend to bid the same value in the long-time limit. Moreover, this common value is the true cost or the ceiling price of the auction, depending on the level of competition. A discontinuous phase transition occurs when half of the bidders win. We establish the corresponding rate equations, and we obtain a system of ordinary differential equations describing the dynamics. Finally, we derive formally the kinetic equations modeling the dynamics, and we study the asymptotic behavior of solutions of the corresponding first-order, nonlinear partial differential equation satisfied by the distribution of agents.
Palabras clave: Game theory , Auction , Kinetic equations
Ver el registro completo
 
Archivos asociados
Tamaño: 1.678Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/248784
URL: https://link.springer.com/article/10.1007/s13235-023-00508-9
DOI: http://dx.doi.org/10.1007/s13235-023-00508-9
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Kind, Martin; Learning, Mean Field Approximations, and Phase Transitions in Auction Models; Springer; Dynamic Games and Applications; 14; 2; 6-2023; 396-427
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES