Mostrar el registro sencillo del ítem
dc.contributor.author
Maestri, Mauricio Leonardo
dc.contributor.author
Farall, Rodolfo Andres
dc.contributor.author
Groisman, Pablo Jose
dc.contributor.author
Cassanello, Miryan
dc.contributor.author
Horowitz, Gabriel Ignacio
dc.date.available
2024-11-20T17:56:18Z
dc.date.issued
2010-03
dc.identifier.citation
Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio; A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 34; 2; 3-2010; 223-231
dc.identifier.issn
0098-1354
dc.identifier.uri
http://hdl.handle.net/11336/248371
dc.description.abstract
Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Fault detection
dc.subject
Multiple operating modes
dc.subject
Multivariate statistical process monitoring
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-03T13:12:25Z
dc.journal.volume
34
dc.journal.number
2
dc.journal.pagination
223-231
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
dc.description.fil
Fil: Farall, Rodolfo Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
dc.description.fil
Fil: Horowitz, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. YPF - Tecnología; Argentina
dc.journal.title
Computers and Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135409001331
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compchemeng.2009.05.012
Archivos asociados