Mostrar el registro sencillo del ítem

dc.contributor.author
Maestri, Mauricio Leonardo  
dc.contributor.author
Farall, Rodolfo Andres  
dc.contributor.author
Groisman, Pablo Jose  
dc.contributor.author
Cassanello, Miryan  
dc.contributor.author
Horowitz, Gabriel Ignacio  
dc.date.available
2024-11-20T17:56:18Z  
dc.date.issued
2010-03  
dc.identifier.citation
Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio; A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 34; 2; 3-2010; 223-231  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/248371  
dc.description.abstract
Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Fault detection  
dc.subject
Multiple operating modes  
dc.subject
Multivariate statistical process monitoring  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-03T13:12:25Z  
dc.journal.volume
34  
dc.journal.number
2  
dc.journal.pagination
223-231  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina  
dc.description.fil
Fil: Farall, Rodolfo Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina  
dc.description.fil
Fil: Horowitz, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. YPF - Tecnología; Argentina  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135409001331  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compchemeng.2009.05.012