Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes

Maestri, Mauricio LeonardoIcon ; Farall, Rodolfo Andres; Groisman, Pablo JoseIcon ; Cassanello, Miryan; Horowitz, Gabriel Ignacio
Fecha de publicación: 03/2010
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers and Chemical Engineering
ISSN: 0098-1354
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed.
Palabras clave: Fault detection , Multiple operating modes , Multivariate statistical process monitoring
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.314Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/248371
URL: https://www.sciencedirect.com/science/article/pii/S0098135409001331
DOI: https://doi.org/10.1016/j.compchemeng.2009.05.012
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio; A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 34; 2; 3-2010; 223-231
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES