Mostrar el registro sencillo del ítem
dc.contributor.author
Lusi, Anabela Rocío
dc.contributor.author
Orte, Pablo Facundo
dc.contributor.author
Wolfram, Elian Augusto
dc.contributor.author
Orlando, José Ignacio
dc.date.available
2024-11-13T10:51:33Z
dc.date.issued
2024-10
dc.identifier.citation
Lusi, Anabela Rocío; Orte, Pablo Facundo; Wolfram, Elian Augusto; Orlando, José Ignacio; Cloud classification through machine learning and global horizontal irradiance data analysis; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 10-2024; 1-17
dc.identifier.issn
0035-9009
dc.identifier.uri
http://hdl.handle.net/11336/248045
dc.description.abstract
Cloud observations and characterization are crucial owing to their influence on energy balance, climate, and weather. Their particular effects on radiation vary depending on different cloud parameters, such as cloud base or top height, water content, and cloud optical thickness, all of them closely related to the specific cloud type. Cloud classification therefore becomes a crucial task in meteorology, although it remains challenging for weather services worldwide owing to the intensive associated labor and cost. In this study we introduce a new low-cost method for automating cloud classification based on a combination of ground-based global horizontal irradiance (GHI) measurements, a clear-sky model, and machine learning. Based on the hypothesis that different cloud types have their own GHI signatures, we trained different supervised learning algorithms using GHI data manually labeled by meteorological observers from time-synchronized all-sky images. Multiple time windows were extracted from each GHI series, with eight features defined in each case to characterize the sequence. The best outcome was achieved using an XGBoost model on features extracted on time windows of 33 min, obtaining an accuracy of 0.88 and a Cohen´s kappa of 0.84 in a held-out test set. The development presented in this study has the ability to provide low-cost cloud classification from ground-based observations, which is a challenge for weather services worldwide owing to intensive labor and cost.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLOUD CLASIFICATION
dc.subject
SOLAR IRRADIANCE
dc.subject
MACHINE LEARNING MODEL
dc.subject
ALL-SKY IMAGES
dc.subject
MACHINE LEARNING MODEL
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cloud classification through machine learning and global horizontal irradiance data analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-12T13:17:56Z
dc.journal.pagination
1-17
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Lusi, Anabela Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
dc.description.fil
Fil: Orte, Pablo Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
dc.description.fil
Fil: Wolfram, Elian Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
dc.description.fil
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
dc.journal.title
Quarterly Journal of the Royal Meteorological Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4880
Archivos asociados