Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Cloud classification through machine learning and global horizontal irradiance data analysis

Lusi, Anabela RocíoIcon ; Orte, Pablo FacundoIcon ; Wolfram, Elian AugustoIcon ; Orlando, José IgnacioIcon
Fecha de publicación: 10/2024
Editorial: John Wiley & Sons Ltd
Revista: Quarterly Journal of the Royal Meteorological Society
ISSN: 0035-9009
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Cloud observations and characterization are crucial owing to their influence on energy balance, climate, and weather. Their particular effects on radiation vary depending on different cloud parameters, such as cloud base or top height, water content, and cloud optical thickness, all of them closely related to the specific cloud type. Cloud classification therefore becomes a crucial task in meteorology, although it remains challenging for weather services worldwide owing to the intensive associated labor and cost. In this study we introduce a new low-cost method for automating cloud classification based on a combination of ground-based global horizontal irradiance (GHI) measurements, a clear-sky model, and machine learning. Based on the hypothesis that different cloud types have their own GHI signatures, we trained different supervised learning algorithms using GHI data manually labeled by meteorological observers from time-synchronized all-sky images. Multiple time windows were extracted from each GHI series, with eight features defined in each case to characterize the sequence. The best outcome was achieved using an XGBoost model on features extracted on time windows of 33 min, obtaining an accuracy of 0.88 and a Cohen´s kappa of 0.84 in a held-out test set. The development presented in this study has the ability to provide low-cost cloud classification from ground-based observations, which is a challenge for weather services worldwide owing to intensive labor and cost.
Palabras clave: CLOUD CLASIFICATION , SOLAR IRRADIANCE , MACHINE LEARNING MODEL , ALL-SKY IMAGES , MACHINE LEARNING MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 11.13Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/248045
URL: https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4880
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(UNIDEF)
Articulos de UNIDAD DE INVESTIGACION Y DESARROLLO ESTRATEGICOS PARA LA DEFENSA
Citación
Lusi, Anabela Rocío; Orte, Pablo Facundo; Wolfram, Elian Augusto; Orlando, José Ignacio; Cloud classification through machine learning and global horizontal irradiance data analysis; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 10-2024; 1-17
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES